第1篇:《约数和倍数》数学教学反思
“约数和倍数”是数的整除这部分知识的第一课时,“整除”、“约数”、“倍数”、三个概念(特别是“整除”)非常重要,学生是否真正理解和掌握,这关系到对后面整个单元知识的学习和运用,而且还直接影响到以后学习分数的约分和通分。我在上这节课时各部分层次清楚,从学生反馈的情况看,教学效果良好。以下是几点体会:
1、从提供的信息中让学生列算式,为下面算式分类作好了准备!这个环节让学生体会了数学来自于生活实际,但要注意有效性!
2、“约数和倍数”是学生第一次接触的新概念,在揭示时应该放慢速度,并进行板书,便于学生理解掌握!
3、让孩子在游戏中体会和感悟,比较好!在约数和倍数的概念一建立后,组织学生做游戏,在游戏中找具体数的约数和倍数,从中体会、感悟知识的内涵和外延,这也正符合新课标中所要求的重视学生的情感体验,重视学生的体会和感悟。同时,也使学生感受到了数学的趣味性和无穷魅力。但游戏之后应该提炼“任何自然数都是1的倍数,1是任何自然数的约数”这重要一点!
第2篇:《约数和倍数》数学教学反思
3月10日,我上了“约数和倍数”一课,又经过丁主任的指导,感触颇深。
一、关于目标定位
在设计这节课时,首先确定了以理解“整除”、“约数”和“倍数”的意义及相互间的关系、整除中“1”和“0”两个特殊的数的情况作为知识目标;判断是否是整除、正确叙述整除、约数和倍数关系及在概括整除的意义环节中培养观察、类推等能力作为技能目标。这仅仅是在设计教案之初设定的目标,是完整教案中的一部分,它的定位准确仅是上好这节课的前提,而非保证。而更重要的是在具体教学过程设计中体现出的.目标定位,这是备好一节课的基本条件。最重要的,则是教学实施过程中体现的目标定位,这才真正是评定一节课的目标定位的依据。我在这一节课的设计中,即上述前两个方面,目标定位是比较明确的,但最关键的第三个方面即实施过程中所体现出的目标定位相对来说就没有足够的重视,因此也就使得原先设定的目标没有得到最好的落实。这使我感觉到,目标的定位并非在教学设计时设定好了就可以“一劳永逸”,而是一定要贯穿到整个教学流程的始终。
二、关于教学设计
我在设计这节课时,在设定目标之后就在目标的指引下按“一般流程”来设计教学过程,并参照了一些好的课例,课的知识点、环节、问题情境的设计是很完整的。但现在想来,如果在设计教案时首先确定一个大的框架,然后再进行填补,肯定能使教学思路更为清晰,重点更为突出。就像搭一个建筑物,先搭一个大框架,再逐步填充,比脑子里想着结构一块砖一块砖垒上去更加容易把握住。我在这节课的设计之初,有一个比较明确的大体框架,但在具体设计时,则一个一个环节细细推敲,甚至于一句话都要推敲得令自己满意为止。但这样随着“推敲”的逐步深入与细化,课的大框架即整体思路反而淡化了,甚至有一些模糊,这显然是得不偿失的。这使我感觉到,要备好一节课,必须始终把握住一个整体的框架,而不能过于重视一些细枝末节的东西,这样才能把握住课的重点,形成一个清晰的教学思路。
三、关于教学实施
为了上好这节课,我首先想到了摆正教师与学生的主导与主体地位,于是精心设计了每一个环节,能让学生自主探究的决不包办替代,这在如今形势下应该算是“应时之举”。课的第一部分是理解“整除”的意义,我也组织了学生探究,即算、分类、找特征、概括意义;最后关于两个特殊的数“0”与“1”,也安排了一组填充来让学生找规律。但在具体实施中,由于怕“讲过头”有越位之嫌,关键处学生即使探究不出什么来也不敢讲,却不想导致了“导”得太多,完全违背了初衷,甚至像兜圈子,也因而坐失良机,降低了效率。该出手时还是得出手,而不是从一个极端走向另一个极端,学生无法探究出的或者是根本不需要由学生探究的,该讲授还是要讲授,该自学的还是自学,我想这样才是对新课改的正确把握。
要提高数学教学的质量,精讲多练无疑是最有效的策略。要做到这一点,我们要做的还有很多,很多。
第3篇:《约数和倍数》数学教学反思
最近我上了“约数和倍数”一课。开头一部分最初我是这样设计的:
师:我们学了四年多数学了,我们都感受到数学其实就是有关“数”的“学问”。而数在我们生活中无处不在,你能举些例子吗?生:(举例)
师:老师这里也有一些含有数的信息(出示一组数据),你能选其中两个组成应用题吗?生:(口答组成的应用题及算式)教师板书。
师:请同学们观察以上这些算式,并根据算式的特点分类,分好后小组交流。(学生自己分好类后小组交流)
师:哪位同学来说说你是怎么分类的?
随后在思考这节课时,我发现按这样的方案上的话虽然能在一定程度上调动学生的参与积极性,使学生更多地参与进来,但耗时太多,情节太多太杂,这样既不能突出课的重点,也减少了这节课学生接受新知和练习的时间,显然得不偿失。于是我“忍痛割爱”把这一环节进行了简化:
首先出示9个算式,让学生进行口算,这样一方面进行基本训练,提高口算能力,另一方面让学生感受除法计算中的不同情况,为分组、认识整除埋下伏笔。
上完这节课后,丁主任对这节课进行了指导,我进而认识到,经过调整后虽然摒齐了对课的形式的过分追求,但对课的设计思考是不到位的。对教学的目标教师和学生还都不够清楚,重点还不够突出。于是我又进行了调整:
课一开始,教师首先揭示课题,并提问学生由这个课题想到了什么。这样就让学生在一开始就有一个明确的目标。然后教师直接点出:要认识约数和倍数,我们首先要认识一个非常重要的概念——整除。随后就出示已计算好的一组算式,看一下计算是否正确,再按照算式中被除数、除数和商的特点来进行分类。
第二次上这节课时,我就感觉到,教师和学生都有了明确的目标,也因为有了明确的目标,教师的教学思路清晰了,学生的学也有了明确的方向,从而也使得这节课的重点很好地体现了出来,效果明显比第一次上时好多了。
随着新课改的不断深入,我们从最初的狂热中逐渐冷静下来,也开始更多地思考如何重实效轻形式的问题。通过两改两上这节课,我进一步感受到,我们的数学课堂不是一定需要吸引人的问题情境来调动学生的学习积极性。清晰的思路、严密的逻辑、成功的体验,用数学本身的魅力来吸引学生,也许更有利于学生的长远发展。
第4篇:《约数和倍数》数学教学反思
教学目标:
(一)进一步理解并掌握最大公约数和最小公倍数的概念,分清求最大公约数和最小公倍数的相同点和不同点。
(二)培养学生仔细、认真的做题习惯和比较的思维方法。
(三)培养学生观察、分析、比较的能力。
教学重点和难点:
最大公约数和最小公倍数异同点的比较。
教学用具:教具:小黑板,投影片。
教学过程设计:
(一)复习准备
1、什么叫最大公约数和最小公倍数?怎样求最大公约数和最小公倍数?
2、求下面各题的最大公约数和最小公倍数?(口答)
8和16,13和26,2和9,7和15
教师:对上面几道题你是怎么想的?各有什么特点?
明确:①两个数有倍数关系,最大公约数最较小数,最小公倍数是较大数。
②两个数互质,最大公约数是1,最小公倍数是两个数乘积。
(二)学习新课
1.出示例4。
求30和45的最大公约数和最小公倍数。(要求学生独立完成。)
学生口述教师板书。33045
51015
23
30和45的最大公约数是:3×5=15
33045
51015
23
30和45的最小公倍数是:3×5×2×3=90
教师:观察上面两道题,谁能说出求最大公约数和求最小公倍数有什么地方相同?什么地方不同?(讨论)
在讨论的基础上,总结出下面的结论。
求两个数的最大公约数
求两个数的最小公倍数
相同点
都要用短除法分解质因数
不同点
只要把除得的除数相乘
把除得的除数和商都相乘
教师:为什么求最大公约数只要把所有除数乘起来,而求最小公倍数就要把所有除数和商都乘起来呢?
明确:求最大公约数是两个数公有质因数的积;求最小公倍数既要包含两个数公有质因数,又要包括各自独有的质因数。
教师:既然求两个数的最大公约数和最小公倍数的短除过程是相同的,那么,我们就可以用一个短除式来表示。例4怎样做简便?(由学生完成。)
2.出示做一做。
根据下面的短除,你能很快说出42和56的最大公约数和最小公倍数吗?
24256
72128
34
(三)巩固反馈
1.求下面各组数的最大公约数和最小公倍数。
30和18,75和35,16和72
9和31,20和12,100和30
2.判断正误并说明理由。
①互质的两个数没有最大公约数;
②两个数的最小公倍数,是这两个数的最大公约数的倍数;
③a与b的最大公约数是1,那么a与b的最小公倍数是ab;
④用短除法求两个数的最小公倍数时,可以用这两个数的公约数连续去除。
⑤17和51的最大公约数是17,
最小公倍数是:17×51=867。
3.选择正确答案的序号填在里。
(1)已知甲、乙两个数互质,那么甲、乙最大公约数是,最小公倍数是。
①1,②甲,③乙,④甲×乙
(2)已知a=2×3×2,b=2×3×5,那么a,b的最大公约数是,最小公倍数是。
①2×3②2×3×2③2×3×5④2×3×2×5
(四)课堂总结(学生总结)
1.求两个数的最大公约数,最小公倍数用一个短除式。
2.求最大公约数把所有的除数乘起来,求最小公倍数把所有的除数和商乘起来。
(五)布置作业:课本65页练习十一,11、12
课堂教学设计说明
本节新课教学分为两部分。
第一部分,教学例4,由学生独立求出最大公约数和最小公倍数。
第二部分,对比例4中最大公约数,最小公倍数的求法,讨论它们有什么异同点,结合算理找出解法不同之处的内在原因,从而总结出结论。
教学反思:知其然且知所以然——摆脱纯技能的训练
本节课教学是在学生学习分别求最大公约数和最小公倍数的基础上进行的,目的是让学生能够区分并深入理解求最大公约数和最小公倍数的方法。在掌握方法时还需要多问一个为什么。比如求30和45的最大公约数和最小公倍数中,为什么3×5=15是两数的最小公倍数,3×5×2×3=90是两数的最小公倍数?对于这一点,应该让学生透过题目表面的理解,寻求对它本质的掌握。教学中在安排学生独立完成例题后,分组讨论此题求最大公约数和最小公倍数有什么异同点,由学生列表得出结论。进一步引发学生思考为什么求最大公约数是把所有除数相乘,而求最小公倍数是把所有除数和商相乘?使学生深入、透彻地理解求最大公约数和最小公倍数的方法。
或许,这样的题目经过机械的训练,也能达到会做类似的题目的效果,但是如果换成12=2×2×3,30=2×3×5,求12和30的最大公约数和最小公倍数,你还能保持高的正确率吗?恐怕很难。甚至还会有这样的题目:m=a×b×c,n=a×c×c,求m和n的最小公约数和最小公倍数,恐怕这次做对的就更少了。所以只有学生明白了算理:两数最大公约数是两数的所有公有的质因数的乘积,两数最小公倍数是两数所有公有的质因数和独有的质因数的乘积,才能有效正确地解答。
所以,在进行技能训练的时候,还要多问一个为什么,让学生搞清楚算理,有助于学生对知识的迁移。同时培养了学生严谨治学、独立思考的学习习惯及比较的能力。