高二数学教学计划

句文网    发表于:2023-12-18 18:30:55

第1篇:高二数学教学计划

一、指导思想:

为进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会进步的需要。具体目标如下:

1、获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。

2、提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力。

3、提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。

4、发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。

5、提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。

6、具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。

二、教材特点:

我们所使用的教材是人教版《普通高中课程标准实验教科书数学(A版)》,它在坚持我国数学教育优良传统的前提下,认真处理继承,借签,发展,创新之间的关系,体现基础性,时代性,典型性和可接受性等到,具有如下特点:

1、亲和力:以生动活泼的呈现方式,激发兴趣和美感,引发学习激情。

2、问题性:以恰时恰点的问题引导数学活动,提高问题意识,孕育创新精神。

3、科学性与思想性:通过不同数学内容的联系与启发,强调类比,推广,特殊化,化归等思想方法的运用,学习数学地思考问题的方式,提高数学思维能力,培育理性精神。

4、时代性与应用性:以具有时代性和现实感的素材创设情境,加强数学活动,发展应用意识。

三、教法分析:

1、选取与内容密切相关的,典型的,丰富的和学生熟悉的素材,用生动活泼的语言,创设能够体现数学的概念和结论,数学的思想和方法,以及数学应用的学习情境,使学生产生对数学的亲切感,引发学生看个究竟的冲动,以达到提高其兴趣的目的。

2、通过观察,思考,探究等栏目,引发学生的思考和探索活动,切实改进学生的学习方式。

3、在教学中强调类比,推广,特殊化,化归等数学思想方法,尽可能养成其逻辑思维的习惯。

四、学情分析:

1、基本情况:高二(1)班共50人,男生36人,女生14人;本班相对而言,数学尖子约13人,中上等生约23人,中等生约6人,中下生约6人,后进生约2人。

高二(2)班共49人,男生37人,女生12人;本班相对而言,数学尖子约0人,中上等生约7人,中等生约8人,中下生约22人,后进生约12人。

2、(1)班学生学习情况良好,但学生自觉性差,自我控制能力弱,因此在教学中需时时提醒学生,提高其自觉性。班级存在的最大问题是计算能力太差,学生不喜欢去算题,嫌麻烦,只注重思路,因此在以后的教学中,重点在于提高学生的计算能力,同时要进一步提高其思维能力。同时,由于初中课改的原因,高中教材与初中教材衔接力度不够,需在新授时适机补充一些内容。因此时间上可能仍然吃紧。同时,其底子薄弱,因此在教学时只能注重基础再基础,争取每一堂课落实一个知识点,掌握一个知识点。

五、教学要求:

1、了解合情推理的含义,能利用归纳和类比等进行简单的推理,了解合情推理在数学发现中的作用;了解演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理;了解合情推理和演绎推理之间的联系和差异。

2、了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法的思考过程、特点;了解间接证明的一种基本方法──反证法;了解反证法的思考过程、特点。

3、(理)了解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题。

4、理解复数相等的充要条件;了解复数的代数表示法及其几何意义;会进行复数代数形式的四则运算;了解复数代数形式的加、减运算的几何意义。

5、(理)理解分类加法计数原理和分类乘法计数原理;会用分类加法计数原理或分步乘法计数原理分析和解决一些简单的实际问题;理解排列、组合的概念;能利用计数原理推导排列数公式、组合数公式,能解决简单的实际问题;能用计数原理证明二项式定理,会用二项式定理解决与二项展开式有关的简单问题。

6、(理)理解取有限个值的离散型随机变量及其分布列的概念,了解分布列对于刻画随机现象的重要性;理解超几何分布及其导出过程,并能进行简单的应用;了解条件概率和两个事件相互独立的概念,理解n次独立重复试验的模型及二项分布,并能解决一些简单的实际问题;理解取有限个值的离散型随机变量均值、方差的概念,能计算简单离散型随机变量的均值、方差,并能解决一些实际问题;利用实际问题的直方图,了解正态分布曲线的特点及曲线所表示的意义。

7、了解下列一些常见的统计方法,并能应用这些方法解决一些实际问题:了解独立性检验(只要求22列联表)的基本思想、方法及其简单应用;了解假设检验的基本思想、方法及其简单应用;了解聚类分析的基本思想、方法及其简单应用;了解回归的基本思想、方法及其简单应用。

9、了解程序框图;了解工序流程图(即统筹图);能绘制简单实际问题的流程图,了解流程图在解决实际问题中的作用;了解结构图;会运用结构图梳理已学过的知识、整理收集到的资料信息。

8、所有考生都学习选修4-4坐标系与参数方程,理科考生还需学习选修4-5不等式选讲这部分专题内容。

六、教学措施:

1、激发学生的学习兴趣。由数学活动、故事、吸引人的课、合理的要求、师生谈话等途径树立学生的学习信心,提高学习兴趣,在主观作用下上升和进步。

2、注意从实例出发,从感性提高到理性;注意运用对比的方法,反复比较相近的概念;注意结合直观图形,说明抽象的知识;注意从已有的知识出发,启发学生思考。

3、加强提高学生的逻辑思维能力就解决实际问题的能力,以及提高提高学生的自学能力,养成善于分析问题的习惯,进行辨证唯物主义教育。

4、抓住公式的推导和内在联系;加强复习检查工作;抓住典型例题的分析,讲清解题的关键和基本方法,注重提高学生分析问题的能力。

5、自始至终贯彻教学四环节,针对不同的教材内容选择不同教法。

6、重视数学应用意识及应用能力的提高。

第2篇:高二数学教学计划

一、学术条件分析

二年级五班有73名学生,

八班有70名学生。这两个班是高二理科班的第三个班。大多数学生基础薄弱,学习兴趣低,甚至很多学生害怕数学。但是他们还是有一颗学好数学的心,也想融入到日新月异的数学世界中去,甚至想在每一次考试中领先。有鉴于此,通过正确引导,教学中适当调整难度,降低起点,一小步一小步,就能取得好成绩。

二、教学计划

1、加强自学。

(1)加强教材的学习。课本是一切教学的起点,也是考试的归宿。任何一个数学知识点都会从课本上找到类型题或者类似的题或者它们的影子。教学知识的全面性和系统性直接决定于教材能否被透彻理解和专题研究。也决定了学习课本的必要性。

(2)他山之石可以攻玉。由于生活环境、面对的对象、自身知识的局限等原因,自己的视野和起点有限,思考和解决问题的广度和深度也有限。所以多读一些教学参考书,吸收别人的经验,取长补短,对于增强教学的针对性和刺激性大有裨益。

强化课程改革意识。新课程改革全面展开,其精神和思想具有独特的时代性、前瞻性和科学性。因此,加强新课程改革知识的学习,理解新课程改革理念,增强新课程改革意识,是时代和发展的需要。因此,要积极参与新课改的培训,把握新课改的精髓,并应用于实践。这样才能让我们的知识代谢。

认真参与小组备课。珍惜每周一次的集体备课,充分利用这次集体备课的机会,向同龄人学习自己的不足或不擅长,积极落实小组内的各项安排,落实课时要求。

增强听课意识。根据学校的要求,积极参与新课改年级的课堂听力活动,听取老师的意见,发现亮点,记录亮点,积累亮点,点亮亮点。

2、把握课堂教学主战场,激发师生学习数学的积极性。

(1)加强新课情景的创设,激发学生的学习热情。每一节新课的开发都有其现实意义、价值和趣味性。充分挖掘这些知识可以起到很好的启动作用。

(2)选择一些例子。对于能学好的同学,就不说了;对于经过讨论能够解决的学生,给予适当的指导;对于在老师指导下完成的学生,慢慢地、仔细地讲,努力让每个学生都听得懂,学得好。我不说超出学生承受范围的话。

课后认真安排作业。

课后作业是课堂教学的反馈。作业质量能在一定程度上反映教学效果。所以作业安排需要科学,分层,多样化,知识点要全面。

3、做好课后辅导。

(1)充分利用晚自习给每个学生耐心、细致、全面的指导。让学生积累的问题得到彻底解决。

利用自习课的时间,找到需要帮助的同学进行辅导。如果你不会背公式,掌握公式,交作业,就会被勒令补课。

4、做好作业和考试反馈。

现在学生的数学答案顺序不清,逻辑混乱,因果颠倒,这不是扎实的基础,也是思维上的缺陷。因此,在现阶段,有助于培养学生良好的数学思维,避免高考失分和未来生活的凌乱。

5、培养学生对数学的兴趣,普及数学价值规律的应用。

兴趣是有的,老师。数学难,很烦。哪里难,哪里烦?找到原因,对症下药,通过课堂移植有趣的中外数学知识,让学生认识到数学的价值,通过多媒体降低数学思维的难度,都是提高学生兴趣的途径

第3篇:高二数学教学计划

一,教学内容

这学期按照教育局教研室的要求,教学任务比较重。选修1-1,第三章《导数》,根据教研室的计划,应该安排在春节前。鉴于期末考试临近,这一章没有学习,所以这学期的教学内容有以下几个部分:选修1-1 《导数》,选修1-2,共四章《统计案例》,《推理与证明》,《数系的扩充与复数的引入》。

二,教学策略

根据年山东省高考数学(文科)大纲的要求,应及时调整教学计划,切实重视学生学习的实施,让学生的学习成为有效的劳动。精心备课,精心指导,针对目标学生不放松,努力使目标学生数学成绩有效,积极交流,提高教学水平,同时认真学习《框图》,学习新课程,应用新课程。

第三,具体措施

这学期我主要从以下几个方面做好教学工作:

1、注重学习计划指导学习,善用好学案例。注重研究老师如何说话,就是注重研究学生如何学习。

2.尽量分层次做作业,尤其是加餐,提高尖子生的学习成绩。

3.特别注意学生作业的落实,不定时查看学生的集锦和作业本。

4.组织单位通过,做好试卷讲评工作。

5.积极沟通目标学生的想法和感受

第4篇:高二数学教学计划

一.指导思想

根据湖北省的新课改教学实施指导意见,结合我们学校的实际教学情况,发挥备课组的集体力量,全力以赴的完成本学期的教学任务。同时加强对新课改理念的学习,相互协作,积极面对新课改的要求。

二.工作重点

认真落实组里每位老师的课堂常规教学任务,努力加强老师的课外教学科研工作;积极学习新课改的理论知识,认真研究新教材的教法,做一个教学科研全方位的教师;同时发挥备课组全体成员的集体力量,积极研讨新教材的教学内容,全力提升高二年级的数学水平,缩小和其它学校的差距。

三.具体措施

(1)落实好组里每位老师的两节公开课的任务,按照先议教案,再听课堂,最后评价的程序严格落实到位。

(2)充分利用每个星期二下午的集体备课时间,商讨教学中存在的问题,探究新教材的教法。同时争取机会出去学习教改名校的数学学科课改教学的经验。

(3)做好每一次阶段性的考试工作,考前认真准备,阅卷客观公正,客观评价教学质量。

(4)分班落实数学学科的培优补差工作,尤其是文科班数学的提升。

(5)准备参加5月份的全国高中数学联赛的活动,积极安排年轻老师参加数学教学竞赛工作。

四.教学进度

(1)2,3月份,文科完成选修1-1和选修3-1,理科完成选修2-1和3-1的教学任务,建议把选修3-1的《数学史选讲》参插讲。

(2)4月份,理科完成选修2-2,文科完成选修4-5

(3)5月份,理科完成选修4-1,文科完成选修4-5。

(4)6月份,理科完成选修4-4,文科开始期末考试的复习。

说明:根据xx省新课程教学实施指导意见,本学期理科完成选修2-1和2-2的内容,文科完成选修1-2和1-1的教学内容,但是我们还是打算把选修3-1,4-5的内容都上完,为高三复习做好准备,从时间上看,文科的教学时间是充足的,但是理科的教学时间比较紧,希望各位老师合理安排好教学时间,确实落实好每章每节的教学任务。

第5篇:高二数学教学计划

本章是高考命题的主体内容之一,应切实进行全面、深入地复习,并在此基础上,突出解决下述几个问题:(1)等差、等比数列的证明须用定义证明,值得注意的是,若给出一个数列的前 项和 ,则其通项为 若 满足 则通项公式可写成 .(2)数列计算是本章的中心内容,利用等差数列和等比数列的通项公式、前 项和公式及其性质熟练地进行计算,是高考命题重点考查的内容.(3)解答有关数列问题时,经常要运用各种数学思想.善于使用各种数学思想解答数列题,是我们复习应达到的目标. ①函数思想:等差等比数列的通项公式求和公式都可以看作是 的函数,所以等差等比数列的某些问题可以化为函数问题求解.

②分类讨论思想:用等比数列求和公式应分为 及 ;已知 求 时,也要进行分类;

③整体思想:在解数列问题时,应注意摆脱呆板使用公式求解的思维定势,运用整

体思想求解.

(4)在解答有关的数列应用题时,要认真地进行分析,将实际问题抽象化,转化为数学问题,再利用有关数列知识和方法来解决.解答此类应用题是数学能力的综合运用,决不是简单地模仿和套用所能完成的.特别注意与年份有关的等比数列的第几项不要弄错.

一、基本概念:

1、 数列的定义及表示方法:

2、 数列的项与项数:

3、 有穷数列与无穷数列:

4、 递增(减)、摆动、循环数列:

5、 数列的通项公式an:

6、 数列的前n项和公式Sn:

7、 等差数列、公差d、等差数列的结构:

8、 等比数列、公比q、等比数列的结构:

二、基本公式:

9、一般数列的通项an与前n项和Sn的关系:an=

10、等差数列的通项公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1为首项、ak为已知的第k项) 当d0时,an是关于n的一次式;当d=0时,an是一个常数。

11、等差数列的前n项和公式:Sn= Sn= Sn=

当d0时,Sn是关于n的二次式且常数项为0;当d=0时(a10),Sn=na1是关于n的正比例式。

12、等比数列的通项公式: an= a1 qn-1 an= ak qn-k

(其中a1为首项、ak为已知的第k项,an0)

13、等比数列的前n项和公式:当q=1时,Sn=n a1 (是关于n的正比例式);

当q1时,Sn= Sn=

三、有关等差、等比数列的结论

14、等差数列的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m - S3m、仍为等差数列。

15、等差数列中,若m+n=p+q,则

16、等比数列中,若m+n=p+q,则

17、等比数列的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m - S3m、仍为等比数列。

18、两个等差数列与的和差的数列、仍为等差数列。

19、两个等比数列与的积、商、倒数组成的数列

、 、 仍为等比数列。

20、等差数列的任意等距离的项构成的数列仍为等差数列。

21、等比数列的任意等距离的项构成的数列仍为等比数列。

22、三个数成等差的设法:a-d,a,a+d;四个数成等差的设法:a-3d,a-d,,a+d,a+3d

23、三个数成等比的设法:a/q,a,aq;

四个数成等比的错误设法:a/q3,a/q,aq,aq3

24、为等差数列,则 (c0)是等比数列。

25、(bn0)是等比数列,则 (c0且c 1) 是等差数列。

四、数列求和的常用方法:公式法、裂项相消法、错位相减法、倒序相加法等。关键是找数列的通项结构。

26、分组法求数列的和:如an=2n+3n

27、错位相减法求和:如an=(2n-1)2n

28、裂项法求和:如an=1/n(n+1)

29、倒序相加法求和:

30、求数列的最大、最小项的方法:

① an+1-an= 如an= -2n2+29n-3

② an=f(n) 研究函数f(n)的增减性

31、在等差数列 中,有关Sn 的最值问题常用邻项变号法求解:

(1)当 0时,满足 的项数m使得 取最大值.

(2)当 0时,满足 的项数m使得 取最小值。

在解含绝对值的数列最值问题时,注意转化思想的应用。

以上就是高二数学学习:高二数学数列的所有内容,希望对大家有所帮助!

第6篇:高二数学教学计划

一、教学目标

(一)知识与技能

1.通过探究学习使学生掌握几何概型的基本特征,明确几何概型与古典概型的区别.

2.理解并掌握几何概型的概念.

3.掌握几何概型的概率公式,会进行简单的几何概率计算.

(二)过程与方法

1.让学生通过对随机试验的观察分析,提炼它们共同的本质的东西,从而亲历几何概型的建构过程,培养学生观察、类比、联想等逻辑推理能力.

2.通过实际应用,培养学生把实际问题抽象成数学问题的能力,感知用图形解决概率问题的方法.

(三)情感、态度、价值观

1.让学生了解几何概型的意义,加强与现实生活的联系,以科学的态度评价一些随机现象.

2.通过对几何概型的教学,帮助学生树立科学的世界观和辩证的思想,养成合作交流的习惯,初步形成建立数学模型的能力.

二、教学重点与难点

教学重点:了解几何概型的基本特点及进行简单的几何概率计算.

教学难点:如何在实际背景中找出几何区域及如何确定该区域的“测度”.

三、教学方法与教学手段

教学方法:“自主、合作、探究”教学法

教学手段:?电子白板、实物投影、多媒体课件辅助

四、教学过程

课后作业

第7篇:高二数学教学计划

一、目标要求

1.深入钻练教材,在借鉴她校课件基础上,结合所教学生实际,确定好每节课所教内容,及所采用的教学手段、方法。

2.本期还要帮助学生搞好《数学》必修内容的复习,一是为学生学业水平检测作准备,二是为高三复习打基础。

3.本期的专题选讲务求实效。

4.继续培养学的学习兴趣,帮助学生解决好学习教学中的困难,提高学生的数学素养和综合能力。

5.本期重点培养和提升学生的抽象思维、概括、归纳、整理、类比、相互转化、数形结合等能力,提高学生解题能力。

二、教学措施:

1、认真落实,搞好集体备课。每周至少进行一次集体备课,每位老师都要提前一周进行单元式的备课,集体备课时,由一名老师作主要发言人,对下一周的教材内容作分析,然后大家研究讨论其中的重点、难点、教学方法等。在星期一的集合备课中,主要是对上周备课中的情况作补充。每次备课都要用一定的时间交流一下前一段的教学情况,进度、学生掌握情况等。

2、详细计划,保证练习质量。教学中用配备资料是《高中数学新新学案》,要求学生按教学进度完成相应的习题,老师要给予检查和必要的讲评,老师要提前向学生指出不做的题,以免影响学生的学习。每周以内容滚动式编一份练习试卷,星期五发给学生带回家完成,星期一交,老师要进行批改,存在的普遍性问题最好安排时间讲评。试题量控制为10道选择题(4旧6新)、4道填空题(1旧3新)、4道解答题。

3、抓好第二课堂,稳定数学优生,培养数学能力兴趣。本学期第二课堂与数学竞赛准备班继续分开进行辅导。平常意义上的第二课堂辅导学生,主要是以兴趣班的形式,以复习巩固课堂教学的同步内容为主,一般只选用常规题为例题和练习,难度低于高考接近高考,用专题讲授为主要形式开展辅导工作。

4、加强辅导工作。对已经出现数学学习困难的学生,教师的下班辅导十分重要,所以每位老师必须重视搞好辅导工作。教师教学中,要尽快掌握班上学生的数学学习情况,有针对性地进行辅导工作,既要注意照顾好班上优生层,更不能忽视班上的困难学生。

总结:以上就是下学期高二必修数学教学计划,希望对您的教学有所帮助。

第8篇:高二数学教学计划

一、学情分析

高二某班共有学生73人, 8班共有学生70人。两个班级都是高二理科班的三类班,大部分学生基础不扎实,学习兴趣不高,甚至很多学生存在怕数学科的心理。但他们还是存在一颗想学好数学的心,也想融入变化多端的数学世界,更想在每次考试中独领风骚,鉴于此,对他们正确引导,教学中适当调整难度,起点放低点,步子迈小点,还是会有好成绩的。

二、教学计划

1、加强自身学习。

①加强课本的研读。教科书是一切教学的出发点,同时也是考试的归属地,任何一个数学知识点都会从教科书中找到类型题或者相似题或者其影子。对教科书能否吃透,专研到位,直接决定着教学知识的全面性和系统性。也就决定着研读教材的必要性。

②他山之石,可以攻玉。一个人由于生活的环境,面对的对象,自身知识局限等多方面原因,视野和出发点都有局限,思考问题和解决问题的广度和深度都有局限,因此,多阅读教学参考类的书,吸取他人的经验,借鉴他人所长弥补自己所短,对于增强教学的针对性和精彩性大有裨益。

③强化课改意识。新课改已经全面铺开,新课改的精神和思想都独具时代性,前瞻性,科学性,因此,加强新课改知识的学习,领悟新课改思想,增强新课改意识,是时代的需要,是发展的需要。因此,积极参与新课改培训,领会新课改精髓,并应用于实践中是当前必须要做的,只有这样,才能使自己的知识新陈代谢。

④认真参与组内备课。珍惜每周一次的集体备课,充分利用好这次集体备课机会,从同行们那里学习到自己缺乏或者不擅长的东西,并积极实施好组内的各项安排,落实好课时要求。

⑤增强听课意识。按照学校的要求,积极参加新课改年级的课堂听课活动,听取授课教师的点评,发现亮点,记录亮点,积累亮点,点亮亮点。

2、抓好课堂教学主战场,激发师生学习数学热情。

①加强新课情景创设,激发学生学习热情。每一节新课的开展,都有其现实意义,有其价值所在,有其趣味性,充分挖掘好这方面知识,可起到一个良好的开端作用。

②精选精讲例题。对于学生自己学得会的,不讲,对于学生讨论后可以解决的,给以适当点拨,对于学生在教师引导下完成的,要慢慢讲,细细的讲,争取每个学生都听得进,听得懂,学得会。对于超越学生承受能力的,一概不讲。

③精心布置课后作业。课后作业是课堂教学的反馈,作业质量的高低,一定层面可以反映教学效果的高低,因此,作业的布置需要科学化,分层化,多样化,且知识点具有全面性。

3、做好课后辅导工作。

①利用晚自习,充分给以每个学生耐心、细心、全面的辅导。让学生积累的问题得到彻底解决。

②利用自习课时间,寻找需要帮助的学生进行辅导,公式背不出来的,抓背公式,不交作业的,责令补交作业。

4、做好作业、考试反馈工作。

学生认真完成作业和考卷,教师进行批改,总结共性问题,发现个性问题,有针对性的给以反馈,及时消除困惑。

5、规范作答,养成良好习惯。

现在学生的数学答卷,条理不清晰,逻辑混乱,因果颠倒,这是基础不扎实的表现,更是一种思维的缺陷。因此,现阶段抓好规范答题,有助于学生良好数学思维的养成,避免将来高考失分和日后生活的凌乱。

6、提高学生的数学兴趣,普及数学价值规律的应用。

兴趣是最好的教师。数学难,数学烦,难在何处,烦在何方?找到原因,对症下药,通过课堂,移植中外数学趣味知识,让学生体会到数学的价值所在,通过多媒体,降低数学思维难度等等都是提高学生兴趣的好方法。

以上是这个学期的教学工作计划,在实施过程中,将及时作出调整,以期达到教与学的最佳效果。

第9篇:高二数学教学计划

一、教材分析

必修三

1.算法章节:

新课标中算法内容的引入,是适应信息技术高速发展的需要,算法体现了通用化、机械化、程序化等特点,在算法教学中的几点建议如下:

(1)同时走好算法表示的三条路,即自然语言、程序框图、算法语句.在教学中,可以结合具体的算法实例,分析用自然语言表示算法的步骤,绘制相应算法的程序框图,并编写相应框图的算法程序.注意三条途径的目的都是体会其中的算法思想.

(2)剖析清楚教材中的几例典型算法实例.例如解一元二次方程、二元一次方程组,质数的判定,按大小顺序输出三个数,1~100的累加,二分法求方程近似解,分段函数的求值等.

(3)学习程序框图时,先结合一个流程图的实例,认知基本的程序框及功能,并分析出其中的逻辑结构.各种逻辑结构(顺序结构、条件结构、当循环结构、直到循环结构)的学习,都应当配合一个具体的例子来逐步分析,特别是循环结构,要一次次循环进行分析,让学生彻底理解框图的功能,提高逻辑思维能力.

(4)可以根据实际情况调整教材中框图的实例.我们在教学中,感觉必修③第5页的框图引例的理解有一定难度,从而结合前面所练的自然语言表示的算法,用框图表示出来,让学生认知框图符号与逻辑结构.参考的算法实例如下:

例1任意给定一个正实数,设计一个算法求以这个数为半径的圆的面积;(教材P4)

例2任意给定一个正整数n,试设计一个算法判断n是否为偶数;(教材P3例1改编)

例3设计一个计算1+2+…+100的值的算法.(教材P9例5提前)

(5)大胆试验,程序框图与算法语句同步教学.我们在分析顺序结构的框图时,讲授算法语句中的输入语句INPUT、输出语句PRINT和赋值语句.在分析条件结构框图时,讲授条件语句,即IF-THEN语句.在分析两种循环结构的框图时,讲授两类循环语句,即WHILE语句与UNTIL语句.每种类型的语句,都配以相应的程序框图进行流程分析,强调语句的格式及功能,结合几个典型实例进行算法分析、框图设计、程序编写等,三者的配合训练,才能更好地加强、巩固算法知识.

(6)典型算法案例(辗转相除法与更相减损术、秦久韶算法、进位制)的学习,都必须奠基在其历史背景之上,讲清楚具体的解题步骤,剖析如此解题的原理,在熟练解题的基础上,再结合框图或语句,从算法思维的角度进行分析.

2.统计章节:

统计是研究如何收集、整理、分析数据的科学.必修③第二章的学习过程,实质就是学习如何逐步解决一个实际问题,我们先认识随机抽样的重要性,并掌握随机抽样的三种类型,通过科学的抽样得到样本,进一步研究如何用样本的频率分布去估计总体分布,又如何用样本的数字特征估计总体的数字特征.在样本数据的分析过程中,发现一些变量之间有一定的规律,例如两个变量的线性相关等.

统计部分的教学,我们需遵循以上认知规律,密切联系现实生活来渗透统计方法与思想,强化抽样方法的步骤及区别、频率分布直方图的五步曲(极差→组距→分组→列表→画图)、数字特征(众数、中位数、平均数、标准差、方差)的计算、线性回归中的数形结合思想及计算器的`配合使用.教学中重点训练的一些题型是:关于分层抽样的数字客观题、频率分布直方图的研究、标准差与方差的实际应用、线性回归模型的求解等.

3.概率章节:

概率是研究随机现象规律性的科学.对比大纲教材,课标教材在概率部分有较大的区别.在必修③概率一章中,利用随机事件的频率给出概率的定义,并学习概率的基本性质及两个概率模型(古典概型、几何概型).我们在教学中需注意如下几个方面:

(1)坚决不补充排列与组合.必修③概率的计算,不是建立在排列组合的计数基础上,而是通过逐一列举来进行计数,或者由简单的分类加法计数方法及分步乘法计数方法来进行计数,两种计数方法也不必上升到计数原理的学习,结合简单的实例渗透计数方法的学习即可.补充排列与组合,违背了课标的精神,淡化了概率思想,也加重了学生的学习负担.排列与组合只是选修2-3的内容,以后选修文科的学生根本不学,概率的学习只是要求达到必修③概率一章的水平.

(2)强调概率意义的理解.教材中呈现了广泛的实例,例如购抽奖中奖的可能性、游戏的公平性、决策中的概率思想、天气预报的概率解释、生物试验中的发现、遗传机理中的统计规律等,通过这些实例阐述了概率的意义,这部分内容往往却被教师轻描淡写的一带而过.我们在教学中,应当认真剖析这些实例,让概率的意义在学生脑海中根深蒂固,从而激发学生进一步学习概率知识的欲望.

(3)在古典概型的基础上,类比学习几何概型.可以从模型特征的共同点与不同点,计算公式及求解步骤等方面进行比较.特别注意古典概型的计算是以简单计数为基础,几何概型的计算则需运用数形结合思想.

本章教学中,重点训练的一些题型是:由概率性质进行概率计算、古典概型的概率计算、几何概型的概率计算.常常融合的实际背景是抛掷硬币、摸球、质检、会面等,渗透的数学思想则以分类讨论思想、数形结合思想为主.

二、任教班级学情分析

12班虽是理科重点班,但数学成绩仍很差,分班数学成绩仅86分(满分150)

全班48人,男生31人,女生17.

三、教学工作目标

尽力提高学生的数学学习能力

四、教学进度安排

本期教学任务:理科:必修三、选修2—1;

一、指导思想:

本学期,我们高二数学组全体成员将认真贯彻我校的教育教学工作要点,在学校教导处工作计划的指导下,以更新观念为前提,以育人为归宿,以提高课堂教学效率为重点。转变教学理念,改进教学方法,优化教研模式,积极探索在新课程改革背景下的小学数学教研工作新体系。提高数学教学质量,努力让本组数学教师成为有思想、有追求、有能力、有经验、有智慧、有作为的新型教师,使备课组的工作更上一个台阶。

二、目标任务:

1、努力提高数学教学质量,使各班数学成绩达到学校规定的有关标准。

2、在数学学科教研教改中注重素质教育,让本组教师成为一支思想素质、业务素质过硬的数学教师队伍。

3、狠抓生本教育,加强数学课堂改革力度,积极开展各项教研活动,提高现代教学水平,切实优化数学课堂教学,充分发挥多媒体教学手段,促进教学质量的提高。

4、积极开展业务学习活动,在全组形成教研之风、互学之风、创新教育之风,共同提高教育教学水平。

5、加强集体备课。本学期,我们组将按照学校的教学计划如实开展教研活动,认真开展合作研练活动,按照“个人研究、同伴交流、达成共识、主备撰写、实践改进、反思提高”的步骤进行集体备课,听课后认真评课,及时反馈,如教学内容安排否恰当。难点是否突破,教法是否得当,教学手段的使用,教学思想、方法的渗透。是否符合素质教育的要求,老师的教学基本功等方面进行中肯,全面的评论、探讨。争取使我们的教学水平更上一个新的台阶。

三、具体措施:

1、把握教材关:

认真学习新课程标准,钻研教材,把握各单元、各节的教学要求和重难点,熟悉教材的特点和编者的意图,订好所教学科的教学计划。计划要体现每单元重难点以及采取的措施,研究解决难点的方法。从而改进自己的教学方法和练习策略。对教材中存在的问题及教学中出现的问题要及时进行记录,及时进行反思,认真反思个人的教育教学心得。

2、规范日常工作:

严格规范数学教学常规。每位教师要认真制定教学计划,认真备课、上课、布置和批改作业、辅导学生、组织数学学科的质量调查。学生作业的规范性要求,包括学生书写作业的规范和教师批阅作业的规范。

3、教师角色的变化:

全组成员要积极实践生本教育,真正实现教师是学习的组织者、引导者,是学生的合作伙伴,不再是在“讲”的基础上“扶”着学生、“牵”着学生去掌握知识,而是要将知识“放”给学生,放心、放手地让学生自主学习。

总之,我们愿与新课程同行,在探索中前进,在失败中成熟,把新课改引向深入。因为我们坚信我们的新课改最终可以使学生学会:用自己的眼睛去观察,用自己的头脑去思考,用自己的语言去表达,用自己的心灵去感悟。

一、指导思想

主动而不是被动的进行高中新课程标准改革,认真解读新课程标准的理念;研究高中新课程标准的实验与高考衔接的问题;把学生的接受性、被动学习转变成主动性、研究性学习;使学生在九年义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会进步的需要。具体目标如下。

1.获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。

2.提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。

3.发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。

4.提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。

5.具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。

二.工作目标

备课组长在教研组长的领导下,负责年级备课和教学研究工作,努力提高本年级学科的教学质量。

1.全组成员精诚团结,互相关心,互相支持,弘扬一种同志加兄弟的同仁关系,力争使我们高一数学组成为一个充满活力的优秀集体。

2.不拘形式不拘时间地点的加强交流,互相之间取长补短,与时俱进,教学相长。

3.在日常工作当中,既保持和优化个人特色,又实现资源共享,同类班级的相关工作做到基本统一。

4.抓好本年级活动课和研究性学习课的教学,有针对性培养学有余力,学有特长的学生,并做好后进生的转化工作,真正做到大面积提高教育质量。

三.主要措施

1.以老师的精心备课与充满激情的教学,换取学生学习高效率。

2.将学校和教研组安排的有关工作落到实处。

3.落实培辅工作,为高三铺路!教育要从娃娃抓起,那么对难于上青天的教学我们应当从今天抓起。

四.活动设想

1.按时完成学校(教导处,教研组)相关工作。

2.共同研究,共同探讨,备课组为新教材每章节配套单元测试卷两套。

3.每周集体备课一次,每次有中心发言人,组织进行教学研讨以便分章节搞好集体备课。

4.互相听课,以人之长,补己之短,完善自我。

5.认真组织好培优辅差工作。

6.做好学科段考、模块的复习、出题、考试、评卷、成绩统计和质量分析评价工作.

7.积极组织全组成员探索教材特点、积极思考教法分析、认真分析学情以便根据不同的情况实施有效的教学策略.

五.教学内容与要求

选修2-2

1.导数及其应用(约24课时)

(1)导数概念及其几何意义

①通过对大量实例的分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景,知道瞬时变化率就是导数,体会导数的思想及其内涵(参见选修1-1案例中的例2、例3)。

②通过函数图像直观地理解导数的几何意义。

(2)导数的运算

①能根据导数定义求函数y=c,y=x,y=x2,y=x3,y=1/x,y=x的导数。

②能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单的复合函数(仅限于形如f(ax+b))的导数。

③会使用导数公式表。

(3)导数在研究函数中的应用

①结合实例,借助几何直观探索并了解函数的单调性与导数的关系(参见选修1-1案例中的例4);能利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间。

②结合函数的图像,了解函数在某点取得极值的必要条件和充分条件;会用导数求不超过三次的多项式函数的极大值、极小值,以及闭区间上不超过三次的多项式函数最大值、最小值;体会导数方法在研究函数性质中的一般性和有效性。

(4)生活中的优化问题举例。

例如,使利润最大、用料最省、效率最高等优化问题,体会导数在解决实际问题中的作用。(参见选修1-1案例中的例5)

(5)定积分与微积分基本定理

①通过实例(如求曲边梯形的面积、变力做功等),从问题情境中了解定积分的实际背景;借助几何直观体会定积分的基本思想,初步了解定积分的概念。

②通过实例(如变速运动物体在某段时间内的速度与路程的关系),直观了解微积分基本定理的含义。(参见例1)

(6)数学文化

收集有关微积分创立的时代背景和有关人物的资料,并进行交流;体会微积分的建立在人类文化发展中的意义和价值。具体要求见本《标准》中"数学文化"的要求。(参见第91页)

2.推理与证明(约8课时)

(1)合情推理与演绎推理

①结合已学过的数学实例和生活中的实例,了解合情推理的含义,能利用归纳和类比等进行简单的推理,体会并认识合情推理在数学发现中的作用(参见选修2-2中的例2、例3)。

②结合已学过的数学实例和生活中的实例,体会演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理。

③通过具体实例,了解合情推理和演绎推理之间的联系和差异。

(2)直接证明与间接证明

①结合已经学过的数学实例,了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法的思考过程、特点。

②结合已经学过的数学实例,了解间接证明的一种基本方法--反证法;了解反证法的思考过程、特点。

(3)数学归纳法

了解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题。

(4)数学文化

①通过对实例的介绍(如欧几里德《几何原本》、马克思《资本论》、杰弗逊《独立宣言》、牛顿三定律),体会公理化思想。

②介绍计算机在自动推理领域和数学证明中的作用。

更多相关内容: