教学计划

句文网    发表于:2023-11-30 14:25:33

第1篇:教学计划

针对我校高一学生的.具体情况,我在高一数学新教材教学实践与探究中,贯彻因人施教,因材施教原则。以学法指导为突破口;着重在读、讲、练、辅、作业等方面下功夫,取得一定效果。

加强学法指导,培养良好学习习惯。良好的学习习惯包括制定计划、课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。

制定计划使学习目的明确,时间安排合理,不慌不忙,稳扎稳打,它是推动学生主动学习和克服困难的内在动力。但计划一定要切实可行,既有长远打算,又有短期安排,执行过程中严格要求自己,磨炼学习意志。

课前自学是学生上好新课,取得较好学习效果的基础.课前自学不仅能培养自学能力,而且能提高学习新课的兴趣,掌握学习主动权.自学不能搞走过场,要讲究质量,力争在课前把教材弄懂,上课着重听老师讲课的思路,把握重点,突破难点,尽可能把问题解决在课堂上。

上课是理解和掌握基本知识、基本技能和基本方法的关键环节。学然后知不足,课前自学过的同学上课更能专心听课,他们知道什么地方该详,什么地方可略;什么地方该精雕细刻,什么地方可以一带而过,该记的地方才记下来,而不是全抄全录,顾此失彼。

及时复习是高效率学习的重要一环,通过反复阅读教材,多方查阅有关资料,强化对基本概念知识体系的理解与记忆,将所学的新知识与有关旧知识联系起来,进行分析比较,一边复习一边将复习成果整理在笔记上,使对所学的新知识由懂到会。

独立作业是学生通过自己的独立思考,灵活地分析问题、解决问题,进一步加深对所学新知识的理解和对新技能的掌握过程.这一过程是对学生意志毅力的考验,通过运用使学生对所学知识由会到熟。

解决疑难是指对独立完成作业过程中暴露出来对知识理解的错误,或由于思维受阻遗漏解答,通过点拨使思路畅通,补遗解答的过程.解决疑难一定要有锲而 不舍的精神,做错的作业再做一遍。对错误的地方没弄清楚要反复思考,实在解决不了的要请教老师和同学,并要经常把易错的地方拿出来复习强化,作适当的重复 性练习,把求老师问同学获得的东西消化变成自己的知识,长期坚持使对所学知识由熟到活。

系统小结是学生通过积极思考,达到全面系统深刻地掌握知识和发展认识能力的重要环节.小结要在系统复习的基础上以教材为依据,参照笔记与有关资料, 通过分析、综合、类比、概括,揭示知识间的内在联系.以达到对所学知识融会贯通的目的.经常进行多层次小结,能对所学知识由活到悟。

课外学习包括阅读课外书籍与报刊,参加学科竞赛与讲座,走访高年级同学或老师交流学习心得等.课外学习是课内学习的补充和继续,它不仅能丰富学生的文化科学知识,加深和巩固课内所学的知识,而且能满足和发展他们的兴趣爱好,培养独立学习和工作能力,激发求知欲与学习热情。

1、读。俗话说不读不愤,不愤不悱。首先要读好概念。读概念要咬文嚼字,掌握概念内涵和外延及辨析概念。例如,集合是数学中的一个原始概 念,是不加定义的。它从常见的我校高一年级学生 、我家的家用电器、太平洋、大西洋、印度洋、北冰洋及自然数等事物中抽象出来,但集合的概念又不同于特殊具体的实物集合,集合的确定及性质特 征是由一组公理来界定的。确定性、无序性、互异性常常是集合的代名词。

再如象限角的概念,要向学生解释清楚,角的始边与x轴的非负半轴重合和与x轴的正半轴重合的细微差别;根据定义如果终边不在某一象限则不能称为象限 角等等。这样可以引导学生从多层次,多角度去认识和掌握数学概念。其次读好定理公式和例题。阅读定理公式时,要分清条件和结论。如高一新教材(上)等比数 列的前n项和Sn.有q1和q=1两种情形;对数计算中的一个公式,其中要求读例题时,要注重审题分析,注意题中的隐含条件,掌握解题的方法和书写规 范。如在解对数函数题时,要注意真数大于0的隐含条件;解有关二次函数题时要注意二次项系数不为零的隐含条件等。读书要鼓励学生相互议论。俗语说议 一议知是非,争一争明道理。例如,让学生议论数列与数集的联系与区别。数列与数的集合都是具有某种共同属性的全体。数列中的数是有顺序的,而数集中的元 素是没有顺序的;同一个数可以在数列中重复出现,而数集中的元素是没有重复的(相同的数在数集中算作同一个元素)。在引导学生阅读时,教师要经常帮助学生 归类、总结,尽可能把相关知识表格化。如一元二次不等式的解情况列表,三角函数的图象与性质列表等,便于学生记忆掌握。

2、讲。外国有一位教育家曾经说过:教师的作用在于将冰冷的知识加温后传授给学生。讲是实践这种传授的最直接和最有效的教学手段。首先讲要注意 循序渐进的原则。循序渐进,防止急躁。由于学生年龄较小,阅历有限,为数不少的高中学生容易急躁,有的同学贪多求快,囫囵吞枣,有的同学想靠几天冲刺 一蹴而就,有的取得一点成绩便洋洋自得,遇到挫折又一蹶不振。针对这些情况,教师要让学生懂得学习是一个长期的巩固旧知识、发现新知识的积累过程,决非一 朝一夕可以完成,为什么高中要上三年而不是三天!许多优秀的同学能取得好成绩,其中一个重要原因是他们的基本功扎实,他们的阅读、书写、运算技能达到了自 动化或半自动化的熟练程度。

每堂新授课中,在复习必要知识和展示教学目标的基础上,老师着重揭示知识的产生、形成、发展过程,解决学生疑惑。比如在学习两角和差公式之前,学生 已经掌握五套诱导公式,可以将求任意角三角函数值问题转化为求某一个锐角三角函数值的问题。此时教师应进一步引导学生:对于一些半特殊的教(750 度,150度等)能不能不通过查表而求出精确值呢?这样两角和差的三角函数就呼之欲出了,极大激发了学生的学习兴趣。讲课要注意从简单到复杂的过程,要让 学生从感性认识上升到理性认识。鼓励学生应积极、主动参与课堂活动的全过程,教、学同步。让学生自己真正做学习的主人。

例如,讲解函数的图象应从振幅、周期、相位依次各自进行变化,然后再综合,并尽可能利用多媒体辅助教学,使学生容易接受。其次讲要注重突出数学思想 方法的教学,注重学生数学能力的培养。例如讲到等比数列的概念、通项公式、等比中项、等比数列的性质、等比数列的前n项和。可以引导学生对照等差数列的相 应的内容,比较联系。让学生更清楚等差数列和等比数列是两个对偶概念。

3、练。数学是以问题为中心。学生怎么应用所学知识和方法去分析问题和解决问题,必须进行练习。首先练习要重视基础知识和基本技能,切忌过早地进行 高、深、难练习。鉴于目前我校高一的生源现状,基础训练是很有必要的。课本的例题、练习题和习题要求学生要题题过关;补充的练习,应先是课本中练习及 习题的简单改造题,这有利于学生巩固基础知识和基本技能。让学生通过认真思考可以完成。即让学生跳一跳可以摸得着。一定要让学生在练习中强化知识、应 用方法,在练习中分步达到教学目标要求并获得再练习的兴趣和信心。例如根据数列前几项求通项公式练习,在新教材高一(上)P111例题2上简单地做一些改 造,便可以变化出各种求解通项公式方法的题目;再如数列复习参考题第12题;就是一个改造性很强的数学题,教师可以在上面做很多文章。其次要讲练结合。学 生要练习,老师要评讲。多讲解题思路和解题方法,其中包括成功的与错误的。特别是注意要充分暴露错误的思维发生过程,在课堂造就民主气氛,充分倾听学生意 见,哪怕走点弯路 ,吃点苦头另一方面,则引导学生各抒己见,评判各方面之优劣,最后选出大家公认的最佳方法。还可适当让学生涉及一些一题多解的题目,拓展思维空间, 培养学生思维的多面性和深刻性。

例如,高一(下)P26例5求证 。可以从一边证到另一边,也可以作差、作商比较,还可以用分析法来证明;再如解不等式。常用的解法是将无理不等式化为有理不等式求解。但还可以利用换元 法,将无理不等式化为关于t的一元二次不等式求解。除此之外,亦可利用图象法求解。在同一直角坐标系中作出它们的图像。求两图在x轴上方的交点的横坐标为 2,最终得解。要求学生掌握通解通法同时,也要讲究特殊解法。最后练习要增强应用性。例如用函数、不等式、数列、三角、向量等相关知识解实际应用题。引导 学生学会建立数学模型,并应用所学知识,研究此数学模型。

4、作业。鉴于学生现有的知识、能力水平差异较大,为了使每一位学生都能在自己的最近发展区更好地学习数学,得到最好的发展,制定分层次作 业。即将作业难度和作业量由易到难分成A、B、C三档,由学生根据自身学习情况自主选择,然后在充分尊重学生意见的基础上再进行协调。以后的时间里,根 据学生实际学习情况,随时进行调整。

5、辅导。辅导指两方面,培优和补差。对于数学尖子生,主要培养其自学能力、独立钻研精神和集体协作能力。具体做法:成立由三至六名学生组成的讨论 组,教师负责为他们介绍高考、竞赛参考书,并定期提供学习资料和咨询、指导。下面着重谈谈补差工作。辅导要鼓励学生多提出问题,对于不能提高的同学要从平 时作业及练习考试中发现问题,跟踪到人,跟踪到具体知识。要有计划,有针对性和目的性地辅导,切忌冷饭重抄和无目标性。要及时检查辅导效果,做到学生人人 知道自己存在问题(越具体越好),老师对辅导学生情况要了如指掌。对学有困难的同学,要耐心细致辅导,还要注意鼓励学生战胜自己,提高自已的分析和解决问 题的能力。

第2篇:教学计划

在这一学年的工作中,通过和同事共同的努力,提高了我校的教育水平,取得一定的成绩。但在教学工作中,自身尚有不足之处,还需继续努力提高自身的能力。寄望于下一学年度为提高我校学生的整体水平,营造校园的文化气氛,促进我校素质教育的发展作更大的努力。

第3篇:教学计划

学习目标

1、经历逆向得出因式分解方法的过程,并会用提公因式法分解因式.

2、发展学生逆向思考问题的能力和推理能力.

3、在学习过程中获得成功的体验,建立自信心.

本课时

重点难点

或学习建议教学重点:掌握公因式的概念,会使用提公因式法进行因式分解.

教学难点:正确找出公因式,正确用提公因式法把多项式进行因式分解.

本课时

教学资源的使用电脑、投影仪.

学习过程学习要求

或学法指导教师

二次备课栏

自学准备与知识导学:

1、如何计算375×2.8+375×4.9+375×2.3,你是怎样想的?依据是什么?

2、类比上式,能将写成积的形式吗?在多项式中的位置有什么特点?

3、这里是多项式中______都含有的______,称为多项式各项的__________.

分配率.

学习交流与问题研讨:

1、探索研究

议一议:下列多项式的各项是否有公因式?若有,是什么?

⑴⑵⑶

问题:通过上述问题你能否说明如何找出一个多项式各项的公因式.

2、找出公因式后,我们就可以将写成积的形式,

即:=______(______________________),像这

样,把一个多项式化为几个整式积的形式,叫做把这个多项式_________.

3、因式分解与整式乘法的关系

两者是互逆关系

4、例题一(准备好,跟着老师一起做!)

把下列各式分解因式:⑴6a3b–9a2b2c⑵–2m3+8m2–12m

如果多项式的第一项系数是负的,一般要先提出“一”号,使括号内的首项系数变为正,在提出“一”号时,注意括号里的各项都要变号.

5、例题二(有困难,大家一起讨论吧!)

想一想:如何把多项式分解因式?

如果多项式的各项含有公因式,那么就可以把这个公因式提出来.把多项式化成_________与另一个多项式的____________,这种分解因式的方法叫做_______________.

注意:找多项式各项的公因式时,⑴若系数是整数,则取各项系数的最大公约数.⑵对于字母,一是取各项中相同的字母,二是各项相同字母的指数取其次数最低的.

先分离,再提取.

注意:公因式可以是一个单项式,也可以是一个多项式.

体会因式分解的意义及其与整式乘法的区别和联系,为丰富学生的感知,再给出几个多项式引导学生观察,并说出他们能否写成积的形式.

练习检测与拓展延伸:

1、巩固练习

⑴课本P71练一练1、2、3、4.

⑵把下列各式分解因式:

⑶把下列各式分解因式:

①6p(p+q)–4p(p+q)

②(m+n)(p+q)–(m+n)(p-q)

③(2a+b)(2a-3b)–3a(2a+b)

④x(x+y)(x-y)–x(x+y)2

2、提升训练

把下列各式分解因式:

①(a+b)(a-b)-(b+a)

②a(x-a)+b(a-x)-c(x-a)

③10a(x-y)2-5b(y-x)2

④3(x-1)3y-(1-x)3z

3、当堂测试

探究与训练P485-8.

先分离,再提取.

注意:公因式可以是一个单项式,也可以是一个多项式.

课后反思或经验总结:

1、本节课从数引入过渡到式,运用类比的思想得出因式分解的方法之一:提公因式法,并通过观察以及做一做,得出如何找公因式的方法,并把一个多项式通过提公因式法写成积的形式

更多相关内容: