第1篇:五年级数学说课稿
尊敬的各位领导、老师:
大家好!
我是黑龙江省哈尔滨市雷锋小学的谢道翔,我说课的内容是:
人教版小学数学第9册,五年级上P92-93页的教学内容,是第五单元的最后一课时《组合图形面积》。
一、教材分析
本课属 “图形与几何”领域的内容。通过这部分的学习,有利于综合运用平面图形面积计算的知识,进一步发展学生的空间观念。同时充分发挥学生的自主探索、合作交流能力,再加上电脑操作的实践活动,让学生在不断尝试中激发求知欲,在不断摸索中陶冶情操。
二、学情分析
学生在第一学段已经初步认识了一些简单的平面图形,并借助生活经验已形成了初步的空间观念。但思维还处于初级阶段,对于组合图形的面积还需要进一步认识和掌握,为了使学生能从感性认识抽象到理性思考,进一步发展其空间观念,构建新知。正好发挥了多媒体的优势,不仅解决了数学知识的高度抽象性和儿童思维发展具体形象性的矛盾,而且激发了学生学习的兴趣,使其主动参与,积极探究。学生不需要电脑操作,所以在多媒体教室进行教学。
三、教学目标
1、使学生认识组合图形,能将组合图形转化为简单的图形,并通过归类比较,优化出简单的方法求出组合图形的面积。
2、使学生在解决问题的过程中体会解题策略、方法的多样性,发展观察、分析、推理、概括等多种能力,渗透“转化”的思想方法并培养学生的创新能力。
3、结合具体的例题感受计算组合图形面积的必要性,产生积极的数学学习情感,渗透化繁为简,化难为易的意识。
四、教学重、难点
1.教学重点
理解计算组合图形面积的多种方法。
2.教学难点
根据图形之间的联系和一定的隐蔽条件,选择最简、最优的方法求组合图形的面积。
五、教学流程
1、拼一拼,认识组合图形
2、分一分,探究计算方法
3、议一议,总结提炼,突出重点
4、比一比,优化方法,突破难点
5、练一练、巩固梳理方法
6、读一读,拓展心灵视野
下面我将结合自我思考、同伴互助、教学实践、版本对比、网络互动等几个方面来谈我这节课的设计。
一、 拼一拼,动手操作充分感知,认识组合图形
新课标明确指出:“动手操作是学生认识活动的基础,它对学生知识的获取、应用、思维发展、能力的培养及情感态度的形成起到十分重要的作用。”所以如何能更好的认识“组图图形”并很好的对后面的知识进行衔接呢?在这方面网友们的建议给了我很大帮助,尤其是木秀于林和辉煌老师,他们希望我采用“直接出示外部轮廓,让孩子们从资料袋中找基本图形把它填满”的方法,其实之前我是不太赞成这样做的,一方面感觉在实际操作中比较难,同时有局限孩子思维的意思,但在我的第三次试讲中采用后发现很激发学生探究的欲望,感觉乐趣盎然。这样就为后面学习组合图形面积打下了坚实的基础。
二、分议结合,总结提炼,突出重点
儿童思维发展的一般规律是从具体形象开始的,在此基础上再逐步形成抽象的思维特点。在了解了什么是组合图形的基础之上,我提出:“这样的组合图形面积该如何计算呢?”这一问题,学生带着这个问题先进行自主探究,充分利用老师下发的题单和图形学具,通过画、拼、摆等方式,把组合图形转化成以前所学习过的几个简单图形,再通过把这几个简单图形的面积相加得到组合图形的面积,在对组合图形进行“分分合合”的过程中展现的非常充分。那么计算组合图形面积到底有哪些方法呢?同学们在组内进行合作交流,根据各种组合图形的条件总结出不同的有效的计算方法。(出示课件):
① 分割法② 填补法③ 割补法
前两种方法学生掌握的非常好,但在试讲中并没有出现割补法,要知道这也是解决组合图形面积的方法,于是我及时调整预设,在后面“做一做”中进行弥补。这个练习很生动形象的展现出割补法的作用和优势,学生会很自然的往这个方向去思考。通过这样的讲练结合的方式这样由学生自己先独立思考,到合作研究,到全体汇报,再到练习补充的形式体现了探究知识的过程,既培养了学生自主学习、独立思考的能力、又让学生在有效的学习活动中掌握了计算组合图形面积的方法,使教学重点得以突出。
三、比一比,优化方法,突破难点
新课程提倡解决问题的多样化,但多样化不是最终目的,而是优化的基础,如何在算法多样化的基础上进行优化是一个新的生长点。学生动手进行分割、填补方法探究的时候,多数学生都能把它分成两个基本图形,有的同学又继续分成了3个部分。在这个环节中究竟方法是巧是拙,渐渐让学生体验、感悟,总结出分成两个图形分法比较简单,且计算步骤少,优越性体现的比较充分,
在这种认知过程中揭示了组合图形的本质;在其他的分法中,找不到可以计算的数据,合情但不合理,这样仍然不行。深刻体会利用数据时转化图形的重要方面,实际上也是以图形为载体,对学生所进行的思维训练。这样一来学生对于组合图形面积计算的方法的理解更加深入:分解图形时要尽量考虑简便的方法计算,同时也根据已知条件进行分解。发展学生有效分析数据的能力。
四、练读结合,巩固提升素养,拓展心灵视野。
在练习中体现基础、提升、综合等不同层次,并且在练习过后与孩子一同回顾课后练习题,在总结中让学生更加宏观的体会到不同问题要采用合适的方法进行解决。同时通过介绍两千年前古代数学家刘徽的相关知识,让数学彰显历史文化。
我的说课即将接近尾声。回首这17天的研究、上课、反思,再研究、再上课、再反思,收获颇多。这个收获不止是大家你一言我一语献计献策从而对于教材深层次理解的本身,也是自己针对于此权衡利弊,有力取舍而显示的果断、灵活的对大家的沟通互动。
感谢来我“家”作客的人们。可能“招待不周”请多多见谅。
赛课只是一种结果,而其间的过程更让人回味神往。
所以就算赛课过后也希望您常来。
因为赛课有终点,学习无止境!
谢谢大家!
第2篇:五年级数学说课稿
我说课的内容是新世纪版数学五年级上册中的《平行四边形的面积》,我从以下几方面来说明:
一、教材分析、学生分析
教材分析
几何知识的初步认识贯穿在整个小学数学教学中,是按由易到难的顺序呈现的。平行四边行面积的计算是在学生已经掌握并能灵活运用长方行面积计算公式,理解平行四边行特征的基础上,进行教学的。而且,这部分知识的学习运用会为学生学习后面的三角形,梯形等平面图形的面积奠定良好的基础。由此可见,本节课是促进学生空间观念发展,扎实其几何知识学习的重要环节。
学生分析
新课程沐浴下成长的五年级学生,在市级实验校的灵活开放的课堂中,学生们善于独立思考,乐于合作交流,课上表现极为活跃,语言表达能力较强,十分愿意发表独立见解,有较好的学习数学的能力。本单元前几节内容中,学生已经对数格子法、平移重合法、剪割拼补法有了一定的了解,但是,让学生切实理解由平行四边形剪拼成长方形后,长方形的长和宽与平行四边形底和高的关系是一个难点,需要学生在探索活动中,循序渐进、由浅入深地进行操作与观察,从而使学生进一步理解平面图形之间的变换关系,发展空间观念。
教材处理
依据新课程对图形与空间的教学要突出探究性活动的要求,体现《数学课程》的“过程性”目标,同时根据学生忆有的知识水平,我确立了本节课教学的重难点:
重点:平行四边形面积计算公式的推导。
难点:使学生切实理解由平行四边形剪拼成长方形后,长方形的长和宽与平行四边形底和高的关系。
二、教学目标
根据新课标的要求及教材的特点,以“学生的全域发展”作为标准,从“知识与技能,过程与方法,情感、态度与价值观” 三个维度确定如下教学目标:
知识目标:使学生在理解的基础上掌握平行四边形面积的计算公式,能正确计算平行四边形面积。
能力目标:通过对图形的观察,比较和动手操作,发展学生的空间观念,渗透转化和平移的思想,并培养学生的分析,综合,抽象概括和动手解决实际问题的能力。
情感目标:通过活动,激发学习兴趣,培养探索的精神,感受数学与生活的密切联系。
三、教学方式、学习方式及评价方式
教学方式:标准中指出:有效的数学活动不能单纯地靠模仿与记忆,动手操作、自主探索与合作交流是学习数学的重要方式。本节课,采用了情境教学法和引导探究法,组织学生开展丰富多彩的数学活动。在活动中充分调动学生学习的积极性、主动性,为他们创建一个发现、探索的思维空间,使学生更好地去发现、去创造。
学习方式:数学学习活动充满着观察、操作、推理、比较、交流、实验、模拟等探索性与挑战性的活动,本课多次鼓励学生自主探究、合作实践,组织学生认真观察、分析和讨论,在解决生活实际问题的过程中,通过动手实践、合作梳理来完成探究任务。
评价方式
1、恰当评价学生的基础知识和基本技能。
2、注重对学生数学学习过程、学习状况、学习态度的评价。
3、重视对学生探究能力、解决问题能力的评价。
4、评价主体多元化,采用自评、互评、师评相结合的方式。
四、教学手段
为了再现生活情境和展示知识的形成过程,使抽象的数学知识更直观形象地展现在学生眼前,采用多媒体课件来帮助学生理解知识形成过程与内在联系。
五、教学流程
为了能更好地凸显“自主探究”的教学理念,高效完成教学目标,结合本班学生特点,设计如下环节。
(一)结合生活设疑 激发情趣导入
为了跳出陈旧的数学课单纯讲知传道的框架,让学生体会到数学生活的快乐。在新课伊始,我结合生活实际设疑导入,让学生在一个生动的教学中开始探究活动。
上课前,我问孩子们,你们知道现在网络上最受欢迎的是什么游戏吗?因为多数孩子的家里有电脑并已上网,所以多数孩子说:“我知道,我爸爸妈妈天天吃完晚饭后都抢着斗地主,所以一定是斗地主。”听了孩子们的回答,我说:“是啊,人们都喜欢和地主斗一斗智商,有的地主很狡诈,有的地主呢,也很笨,(课件)以前,有这样一个笨地主,他给两个成年儿子分地。长方形的这块分给了大儿子,平行四边形的这块分给了二儿子。但是,两个儿子都认为分给自己的那块地小,都说老财主偏心。这可把老财主气坏了,可他又说不明白。所以,老财主就想找一个聪明人帮助他解决这个问题。同学们,你们能帮帮他吗?学生会跃跃欲试,议论纷纷。
通过这样一个有趣的故事,自然引出本课所要研究的重点内容,并使学生在不知不觉中开始对主题的思考。在这样一个浓厚的探究氛围中,就为学生动脑加大了马力,在学习新知丰富了情趣。巧妙的为后面的教学埋下伏笔。
(二)组织动手实践 多维尝试探究
依据学生对上述故事中的生活实际问题,感兴趣这一可贵资源,我将以故事的问题为主线,进一步引导组织学生动手实践,帮助老财主想办法。
我首先引导学生想办法证明这两块地是一样大的。“假设这两块地就是大家手中的学具卡片,你们将怎么办?”问题提出后,有的学生有了困难,这时我及时引导学生有问题可以到组内交流,讨论。小组学习中,学生不受任何束缚,开动脑筋,各自想尽一切办法来证明这两块地是一样大的,这样不但达到大家参与,共同提高的学习效果,而且激活了学生的思维,激发了学生的创新意识,培养他们的自主合作、探究的精神。
汇报交流时,找准切入点,突破难点。利用从小组汇报中得来的信息,引导学生确定办法的可行性。学生想出了很多办法,如:数格子(学生有计算长方形面积的能力)、重叠卡片对比法,剪割拼补法等等。不论哪一种方法都是宝贵的,因为,这不是教师强加给他们的,而是学生自己研究讨论的结果,是课堂中生成的收获。
引导学生分析、验证是发展学生思维的重要的方法。所以,在学生汇报出多种答案时,我组织学生分组实践各种办法,并要求说明实践过程,要88情合理E3学生在认真、细致的操作中认知到长方形与平行四边形之间的联系,即:(课件)长方形的长和平行四边形的底相等,长方形的宽和平行四边形的高相等,并得出两块地面积相同的答案。
这一组实践操作,看上去是帮助老财主证明分地公平,实际上是组织学生从感性到理性认识长方形的长与平行四边形的底、宽与高相同的内在联系。学生在充足的时间里进行合作探究,他们学习的主动性和学习的潜能得到充分的发挥,学生的个性得到彰显。汇报交流时,他们争先恐后发表自己的见解,课堂气氛异常活跃,民主、宽松、和谐、愉悦的氛围自然形成,学生获得积极的情感体验,同时,也为下一步推导平行四边面积计算公式做好充分的准备。
(三)抓住重点环节,深入推导梳理
学生认知是由浅入深的,通过动手实践,他们已经知道:两个卡片面积相等,长方形的和平行四边形底相等,宽和高也相等。但这三个结论之间并没有在学生思维中产生联系,而这个联系正是本节课的重难点,于是,我组织学生深入推导:利用实践割补法小组的汇报,引导学生思考:(课件)长方形的面积=长﹡宽,那么平行四边形的面积又怎样求呢?顺势学生就梳理出了(课件)平行四边形的面积=底﹡高的文字公式及(课件)字母公式s=ah。公式的顺利推导,都源于上一环节学生的实践操作。这样水到渠成,突破教学重难点,完成了本节课的教学目标。到此,我并没停住,仍然借助老财主分地的情境,(课件)给出两个图形的个体数据,让学生利用公式计算,从而得出面积相等的确切答案,为老财主彻底解决问题,老财主开心的笑了。在巩固平行四边形面积计算的同时,学生也获得了成功的喜悦。
(四)分层运用新知,逐步理解内化
对于新知需要及时组织学生巩固运用,才能得到理解内化效果。我本着“重基础、验能力、拓思维”的原则,设计如下几道练习题:(课件)
1 、基础练习:算出下面每个平行四边形的面积。
出示的几个图形底和高的数值都很简单,但图形位置各不相同,这样可使学生加深对图形的认识,正确分清平行四边形底和高。
2 、提升练习:量出平行四边形的底和高的长度,并分别算出它们的面积。
在第一题的基础上,增加了让学生自己动手测量的要求。使这两道题也体现了“重实践”这一理念。
3 、发散练习:下图两个平行四边形的面积相等吗?为什么?在这条平行线之间,还可以画出几种形状不一样而面积相等的平行四边形。
此题需要学生综合运用知识,进行逻辑推理,使学生明白平行四边形的面积只与底和高有关,与相邻的两边组成的角度大小无关。
整个习题设计部分,虽然题量不大,但却涵盖了本节课的所有知识点,题目呈现方式的多样,吸引了学生的注意力,使学生面对挑战充满信心,激发了学生兴趣、引发了思考、发展了思维。同时练习题排列遵循由易到难的原则,层层深入,也有效的培养了学生创新意识和解决问题的能力。
六、教学预测
本节课中,给学生充足的眼看,手做,耳听,嘴说,脑想的时间与空间,学生都能积极地参与教学活动,从而牢固地掌握知识的要点。与此同时,他们发现和解决问题的能力,动手操作能力都得到了提高。在整个活动中,大部分学生都有发表自己意见的机会。
七、教学反思
本节课的教学实践中,完成了既定的教学目标,在努力创设有利于学生主动探索的学习环境中,让学生带着浓厚的兴趣学到了知识。反思本节课,我有这样几点感悟:
1、 兴趣比学会更重要
孔子曰:“知之者不如好知者,好知者不如乐知者”,一语道出了兴趣的重要性,这足以说明兴趣是学生求知欲的强大动力。本节课伊始,我以“谁来帮地主分地”的故事导入,学生的学习兴趣被激发出来,课堂气氛一下子活跃起来。学生们在兴趣的引导下,积极投入到学习活动中来,大家在学习过程中猜想,发现,验证,在快乐中学习,在学习中得到了快乐。有的孩子在课即将结束时说:数学真有趣!我愿意学数学!看,这不正是兴趣的魅力所在吗?
2、 过程比结果更精彩
整个活动过程,我本着“授人以鱼 ,不如授人以渔”的思想,给学生提供了充分的数学活动机会,充分发挥了学生的主体作用,通过老师引导,学生动手操作,迁移转化,自己探索解决问题的方法,不仅掌握了知识,发展了能力,同时又体验了数学活动充满着探索与创造,学生在数学活动中获得成功的体验。当孩子们一声声兴奋地呼喊着:“老师,我发现了”的时候,他们的脸上溢满了惊喜,我知道这正是课标中所倡导的:过程比结果更重要。
3、 恰当鼓励比超值嘉奖更有效
本节课教学中,我能注重发挥评价的作用,注重对学生学习状态及过程的评价。教学中,我与学生同处一个平台,真诚与学生交流,认真地倾听,相互地接纳和分享,及时地鼓励学生,对于学生的某些正确回答,我并没有夸他:“棒极了!”,“真聪明!”而是对他说:“你能答对,说明你是个善于思考的孩子,但老师相信你能想出更好的办法。”孩子们听到这样的评价学习热情更高涨了,思维题更活跃了,他们有些想法是我的预设中不曾有的,所以我想在学生思维停滞不前的时候,恰当的鼓励比一味地:“你真棒”的超值嘉奖更有效。
教育是一门永远有遗憾的艺术。本节课大部分内容是以自主探索,小组合作的学习方式进行了学习的。但在整个上课过程中,我发现总有那么几个孩子,在自主探究时,总是不是很投入,他们似乎也在想,也在做,但每次在合作交流前,他们都没有自己的想法,而是在小组中去听别人说,然后去附和别人的意见。课下我问他们为什么会这样,他们说:“不用自己想,反正一会儿就合作了,听听别人是怎么想的就行了。”听了他们的话,我一直在想,小组合作是有利于解决问题,集体的智慧更有利于学生的多向思维。然而,这种学习方式也有它自身的缺陷:削弱学生独立思考、独立解决问题的能力,并使之产生一定的依赖性。如果一个人解决不了问题,那可以依靠集体。如果将来的社会需要你独当一面的时候,你又如何去解决问题呢?因而,我想,在今后的教学中,应该在组织学生自主探究这方面再多下些功夫,“巧”下些功夫,让孩子们在乐于独立探究、会独立探究的基础上再去合作交流,这才是孩子们所需要的能力。
第3篇:五年级数学说课稿
一、说教材
1、教学内容:人教版六年制数学第十册 p50
2、教材分析:地位作用:本节课是在学生学过了整数的四则计算,了解了自然数的基础上学习的。通过约数和倍数的学习,为后面进一步学习质数、合数、最大公约数、最小公倍数作好铺垫,也是以后学习约分、通分,分数的四则运算打下基础。
3、教学目标:
⑴知识与技能:能结合具体情景探索掌握整除的意义,理解约数和倍数的含义,学会正确判断一个数是不是另一个数的约数和倍数。
⑵过程与方法:通过直观分析,让学生充分经历知识的形成过程,体验成功的乐趣。
⑶情感、态度与价值观:培养学生分析、比较、抽象、概括和判断的能力。渗透事物之间相互联系、相互依存的辩证关系。
4、重点:理解整除、约数和倍数的意义。
难点:理解整除的意义。
关键:通过分析、讨论,得出整除的特征。相互依存的理解。
二、说教法
1、通过直观分析让学生充分感知,然后经过比较归纳,最后概括整除的意义,从而使学生从形象思维逐步过渡到抽象思维,进而达到感知新知、概括新知、应用新知 、巩固和深化新知的目的。
2、采用快乐教学法,激发学生的学习兴趣,鼓励学生积极发言,参与学习过程和敢于质疑,引导学生自己动口、动脑,以及采用判断、游戏等多种形式的巩固练习,使学生的学习不成为一种负担,而是一种快乐,把数学课上得有趣、有益、有效。
三、说学法:
通过本节教学使学生学会运用观察、分析、讨论的教学手段理解掌握新知识,学会有目的地观察、思考、对比分析问题、概括知识的方法。
四、说教学程序
(一)揭示课题与学习目标
今天这一堂课我们学习的内容是“约数和倍数的意义”,通过学习要求大家做到:①掌握整除的意义,在此基础上理解约数和倍数的意义。②学会正确判断一个数是不是另一个数的约数或倍数。
[开门见山将具体清晰的学习目标,呈现给学生,发挥目标的导向和激励功能,使学生明确学习任务,产生积极的学习心向,从而主动地参与学习过程。]
(二)复习铺垫:复习自然数、整数。同学们已经知道什么是自然数,你能举例子吗?它的单位是什么?
[数的整除的生长点是在整数的基础上,所以学生必须理清数的概念。 ]
(三)学习新知
A、初步感知整除
1、口算(小黑板出示) 15÷5= 1.5÷5= 24÷4= 3.6÷0.9=
16÷3= 80÷20= 6÷5= 23÷7=
[将课本中的题组适作改变,为紧接着的概括整除概念提供更丰富的感性
材料。]
2、学习整除的意义
①学生分组自由讨论,汇报各组的分组依据,引导得出:按商的情况:除尽、除不尽可以分成两组。
15÷5=3 1.5÷5=0.3 16÷3=5……1 80÷20=4
24÷4=6 3.6÷0.9=4 23÷7=3……2 6÷5=1.2
②学生继续自由讨论,对第一组除尽进行分组,汇报分组依据,引导得出: a.被除数、除数、商都是整数; b.被除数、除数、商不都是整数。
[学生自由发挥,充分暴露学生的思维过程,对学生的发散思维起到了促进作用。]
③观察第一组,说说第一组的特点,得出: a.没有余数;b.被除数、除数、商都是整数。例如:15÷5=3 我们就说“15能被5整除”。 那么:24÷4=6 80÷20=4可以怎么说呢?学生试说。
[ 让学生模仿举例,并练习叙述这种关系,为抽象概括整除的意义做好铺垫。]
B、深入学习整除的意义。
如果用字母a表示这样的
被除数,字母b表示这样的除数,那么想一想,整数a 除以整数b,在什么样的情况下才可以说“a 能被b整除”。
看书P28的内容,再齐读整除的意义。
[借助字母a、b启发学生抽象概括出整除的意义,使学生的概念能力得到较好的培养,对照教材,使概念更具科学性。]
C、练习(幻灯出示)
下面哪些除法算式可以说被除数能被除数整除?为什么?
32÷8=4 10÷30=0.3 35÷0.7=50 51÷17=3
20÷9=2……2 4.8÷1.2=4 4.2÷6=0.7 60÷5=12
学生回答后,提问: 哪些除法算式的被除数能被除数除尽?整除与除尽有什么关系?
[在这里通过练习,使概念在思维中具体化,也自然地完成了整除和除尽的关系。]
②下面的每一组的第一个数能不能被第二个数整除?为什么?
28和7 100和20 13和10 15和1
[让学生用语言表述进行分析、判断练习,使学生对整除的概念逐步达到“掌握”的层次。上面教学过程的展现,主要的目的在于引导学生逐步形成概念,训练分析、综合抽象、概括和具体化的思维能力。]
3、学习约数和倍数的意义
前面我们讲了什么叫整除,那么什么叫约数和倍数呢?
①如果整数a能被整数b整除,那么a就叫做b的倍数,b就叫做a的约数。 学生试说黑板上的`整除式子。
②辨析:能不能说15是倍数,5是约数,为什么?得出:约数和倍数是相互依存的,不能单独讲。
③指出:在这一单元里我们所说的约数和倍数一般指除0外的自然数。
④看书P29 质疑
[学生掌握了整除的概念,对于约数和倍数的理解是水到渠成,所以在这里也不多费周折。而是直接出示了约数和倍数,讨论约数和倍数的相互依存关系,不着痕迹地完成辩证唯物主义观点的渗透。]
(四)巩固练习
1、课本P30 第3、4题。
2、下面的说法,对吗?
3、说说下面的数中( )是( )的约数,( )是( )的倍数。
1 3 4 8 12 15 16
[加深练习的难度,巩固所学知识,又为后面的公约数、公倍数的学习奠定基础]
4、游戏,学号符合要求的的起立。
[临近下课,学生易于疲劳,注意力也易涣散,安排此游戏在于提高学生的学习兴趣,又加深对所学知识的理解。]
(五)课堂作业P16
第4篇:五年级数学说课稿
基于对教材的认识,因此我设计本节课的教学目标如下:
(1)在自主探索的活动中,理解计算组合图形的多种方法。
(2)能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。
(3)能运用所学的知识,解决生活中有关组合图形面积的实际问题。感受计算组合图形面积的必要性,产生积极的数学学习情感。
教学重、难点:
针对五年级年级学生的年龄特点和认知水平我确定本节课的教学重点为:
教学重点:学生能够通过自己的动手操作,掌握用割补法求组合图形面积的计算方法。
教学难点:理解计算组合图形面积的多种计算方法,根据图形之间的联系和一定的隐蔽条件,选择最适当的方法求组合图形的面积。
根据学生已有的生活经验,通过直观操作,对组合图形的认识不会很难。所以在探索组合图形面积的计算方法时,我通过自主探索、合作交流等方式达到方法的多样化。重视让每个学生都积极地参与到活动中来,让活动有实效,真正让学生在数学方法、数学思想方面有所发展。
在新授部分展开过程中,根据小学数学新课程标准强调的数学与现实生活的联系,从学生感兴趣的事物和熟悉的生活情境出发,让学生充分体会到数学就在身边,感受到组合图形的趣味性,体会到数学的魅力。所以制定了以下教学环节:
创设情境、复习导入—— 自主探索、合作交流
(一)创设情境、复习导入
1.说一说已经学过哪些平面图形的面积
2.拼一拼七巧板
3.看一看拼出的图形像什么?有哪些图形拼成的。
这一环节设计的目的,是让学生在说一说,拼一拼,看一看的过程中充分调动多种感官参与到学习中来 ,在浓厚的学习氛围中感受到知识于生活,而又服务于生活,明确生活中的很多问题都和组合图形的面积有关.
由此揭示课题:组合图形面积(板书)
(二)自主探索、合作交流
1.学生独立与小组合作交流解决组合图形面积计算问题。
出示例题,请学生自主独立尝试解决“这面墙的面积”这个组合图形的面积计算。在此基础上进行小组交流。在这一环节中我真正的转变们了教师的角色,给学生足够的时间和空间,先进行独立思考,因为没有独立思考为基础的小组交流是无效的,那样只能是学优生、思维敏捷孩子表演的领地,只有建立在每个孩子独立思考的基础上,每个孩子才有话说,那样的小组合作才有效。在这过程中积极主动地参与到学习中,获取更多的解题方法,让每个学生都有成功的体验.)
2.小组汇报学习情况
汇报时用多媒体将学生的学习成果演示出来,会出现下面几种情况:
(1) 将组合图形分割成两个一个正方形、一个三角形。
(2) 将组合图形分割成两个梯形
学生边汇报,教师利用多媒体演示后随即板书。其他同学能清楚地与自己的思路进行比较,并及时发现错误并纠正过来。
3.师生总结分割法。
接下来让学生自主观察比较上面几种方法的不同之处后,再总结出求组合图形面积的计算方法,掌握“分割法”这种计算方法.让学生明确分割图形越简洁,解题方法越简单。
4.新授部分的练习:练习是为了学生及时巩固新知,并能用学到的新知进行迁移。为此我设计了两个层次的练习
a.模仿练习,以割补法为主。
b.变式练习,渗透“添补法”。
(三)练毕校对,及时小结。
在教学过程中教师要适时提醒学生们要考虑到分割的图形与所给条件的关系,有些图形分割后找不到相关的条件就是失败的。这样做有利于突破本节课的教学重点和难点。通过交流多种计算方法,使学生感悟解决问题策略的多样化,并选择最优的方法。
5 .各位评委:今天我说课的内容是关于《组合图形面积》。
《组合图形面积》是义务教育课程标准人教版五年级上册第五单元内容,是在学生学习了长方形与正方形、平行四边形、三角形与梯形的面积计算的基础上学习的,一方面可以巩固已经学过的基本图形,另一方面则能将所学的知识进行整合,注重将解决问题的思考策略渗透其中,提高学生的综合能力。
第5篇:五年级数学说课稿
一、教材分析:
我说课的内容是:人教版五年级下册第88~90页的《最小公倍数》一课。最小公倍数是在学生掌握了倍数、因数和公因数概念的基础上进行教学的,主要是为了以后学习通分做准备。在生活实际中也存在它自身的的意义和作用,这节课是一节以概念为本的教学。教材的编写意图是使抽象的数学知识与生活实际相联系,建立概念 ;用自己想到的方法尝试求两个数的最小公倍数,体现算法的多样化。
二、学情分析:
在不同的学校、班级进行前测,直接让不同认知水平的学生,用模拟的小长方形墙砖铺成正方形。在动手操作中,由于受密铺的影响,横拼竖摆,不但耗时过长,而且很难有效的构建公倍数内在的结构关系。因此在设计操作环节时,我搭建 “脚手架”。通过构建公倍数内在的结构关系和构建公倍数体系两个环节进行有效教学。成功搭建起教学内容与学生求知心理之间的桥梁。
三、教学目标:
(1)建立公倍数与最小公倍数的概念,会用集合图表示。掌握求100以内两个数最小公倍数的方法。
(2)通过动手操作、独立思考、合作探究、合作交流等方式,建立公倍数和最小公倍数的概念,培养发现问题、解决问题的能力。
(3)学会用数学的眼光观察生活、思考问题。积极参与到对数学问题的探究活动中。真真切切地体验到学习数学的快乐和价值。
教学重点:建立公倍数与最小公倍数的概念。
教学难点:掌握求100以内两个数最小公倍数的方法。
四、教学准备:
游戏卡片一套,模拟墙壁的平面图、模拟长方形墙砖多套,作业纸多张和多媒体课件一套。
五、教法和学法:
加点理念课堂上我采用尝试教学法和启发教学法。
学生通过动手操作、独立思考、合作探究、合作交流等方法进行学习。
六、教学过程:
这节课我按照下面五个环节进行教学:初步感知,建立表象;动手操作,建立概念;自主探究,归纳方法;实际应用,回归生活;全课总结,延伸课外。
(一)、初步感知,建立表象。
首先我从游戏中引入,我把枯燥的倍数复习设计成“抢倍数的游戏”。让学生初步感悟公倍数。(预设5-6分钟)
具体操作:
首先我手里拿着数字卡片,给学生说,今天老师给大家带来一个风靡我们全班的游戏—抢倍数游戏。面对全体同学讲一下规则:找两个同学上来,一个负责抢3的倍数,一个负责抢2的倍数。老师把卡片放到黑板上,过了抢的时间老师会把卡片收起来。最后抢的多的同学获胜。
然后把全班分成两大组,要求每组快速派一名代表上来。当两名学生上台进行游戏,其他学生做裁判共同参与。
接下来游戏,当第7张卡片出来的时候,两个同学会同时抢6这个数字。如果没有出现抢的局面。我会再出示12这个数字。学生很容易发现并说出:数字6是决定游戏胜负的关键,因为6既是2的倍数,又是3的倍数。
紧跟着追问:“为什么都来抢6这张卡片”。先让这两个代表说说,再让其他同学说说。
然后揭示出公倍数的概念。6既是2的倍数,又是3的倍数,也就是说6是3和2公有的倍数,我们把6叫做3和2的公倍数.(板书公倍数及概念。)
引导学生想想:那你还知道哪个数是3和2的公倍数?
学生答出12、18、24等数,并用这些数完整的表述出公倍数的概念。
及时表扬说的对,说的完整的同学。多让几个同学说说,并让同桌说说,强化公倍数的概念。
【设计理念:布鲁纳说过:“获得的知识如果没有完整的结构把他们连在一起,那是多半会遗忘的知识。”学习一个概念,需要组织起适当的认知结构,并使之成为内部知识网络的一部分。所以复习倍数的知识是理解公倍数、最小公倍数意义的关键。为了创设学生乐学的氛围,让学生从无意识的玩到有意识的关注6是3和2的公倍数,建立公倍数的概念。体现了认知的由浅入深的过程。】
(二)、动手操作,建立概念。
这一大环节是深刻理解公倍数,建立最小公倍数的重点内容,为此我分两个层次进行教学。
(1) 固定的正方形边长,选择长方形墙砖。(预设6-7分)
首先在前面通过游戏感悟公倍数的基础上,过渡到生活中。让学生体验公倍数能在生活中帮我们做什么。
(出示生活情境,课件显示。)
当学生明白题意后,要求学生利用模拟的长方形墙砖和墙壁正方形平面图,
分小组活动进行动手操作。学生通过摆一摆,画一画,得到不同的方案。
然后让学生汇报想法,谁来说说:你们小组选择的是长几分米,宽几分米的墙砖,怎样铺的?
在汇报方案时,学生都会选择长3分米,宽2分米的墙砖。让学生说说自己的想法。适时进行追问:“正方形墙面墙壁的边长所用墙砖的长和宽有什么关系?”
让学生自主发现:按照要求进行,所铺成的正方形边长必须是小长方形长和宽的公倍数这一结论。
这个时候多让几个学生说说这一结论。
其次我再追问:“大家为什么都不选择长5分米,宽3分米的墙砖?”
学生很容易答出,因为12不是5和3的公倍数。
最后我作课堂小结:“看来所铺正方形墙壁的边长必须是长方形墙砖长3分米,宽2分米的公倍数。”
【设计意图:这一环节搭建的“脚手架”过程,让学生直观的感受到公倍数的意义,这样由实际生活抽象出概念,既有利于培养学生的数学抽象能力,也有利揭示数学与现实世界的联系,帮助学生理解公倍数、最小公倍数概念的现实意义。】
(2) 用固定的长方形墙砖,铺多个的正方形。(预设6-7分)
从上个环节直接过渡到问题中。“同学们,真了不起,通过动手操作,获得很有价值的发现。(课件出示情境)用这种长3分米宽2分米的长方形墙砖,整块整块的铺,还可以铺成边长是多少分米的正方形?”
然后先让学生独立思考。当有的同学有想法后,请同学们拿出表格,填写完整。
让学生填出表格,空间想象能力好的学生能直接想到这些正方形的边长都是2和3的公倍数,想象不出来的,允许动手摆一摆,画一画。
其次把两个同学的表格用实物投影仪打出。让学生交流这样填的想法。
学生有可能答出:发现这些正方形的边长必须是所铺长方形墙砖长和宽的公倍数。及时表扬:“你能用今天所学的公倍数知识解决问题,这了不起”
还可能发现:其他公倍数都是6的倍数;最小的公倍数;公倍数是有很多个…
如果没有学生说出来,及时追问:“察这些公倍数,最小的是几?”学生很容易
说出6是公倍数中最小的。 揭示出:6是最小的公倍数。叫做3和2的最小公倍数。(板书:最小)
及时强化最小公倍数的概念。让多个学生说说6是3和2的什么数?同桌也互相说说。
再次追问:3和2有没有最大的公倍数?这些公倍数能写完吗?让学生说出公倍数是无限的。
【设计意图:怎样能让学生深刻理解最小公倍数的意义,是本节课的一个重点。学生构建数学概念的过程,决不能是简单“告知”的过程,以概念为本的学习需要经历一些经验性的活动过程。通过学生亲自操作和体验,在一种富有生命活力的再创造过程中,主动建立概念。完成数形结合思想的渗透。】
(3) 用集合圈表示倍数、公倍数、最小公倍数。(预设4-5分)
首先让学生用数学上的集合圈的形式表示3的倍数和2的倍数。并把3和2的公倍数画出来。(课件出示两个空白的集合圈)。学生写完后,汇报结果。同时课件显示出答案。
然后利用课件使集合圈重叠一部分。给学生问题:如果这两个集合圈这样放在一起,该怎样填呢?(课件出示空白的交叉的集合圈)
让学生思考、交流。明白各部分填什么,怎样填。让学生在作业纸上
完成后汇报结果。(课件出示答案)并让学生说说3和2的公倍数和最小公倍数,再次理解公倍数和最小公倍数。
【设计意图:根据弗赖登塔尔“数学是一项人类活动”的观点,从学生熟悉的生活开始,从生活中的问题到数学问题,从具体到抽象概念,从特殊关系到一般规则,逐步通过学生自己的发现去学习数学。进行集合思想和极限思想的渗透。感受数学化的简洁美。】
(三)、自主探究,归纳方法。(预设7-8分钟)
这一环节是让学生自主探究出找两个数的最小公倍数的方法。
直接出示问题:那给你两个数6和8,怎样求这两个数的最小公倍数。(板书:怎样求6和8的最小公倍数。)
这时候给学生独立思考的时间。当学生有了想法后,让学生拿出作业纸,把过程写出来。
然后让学生小组可以互相交流一下。
接下来让学生进行汇报。(找几个不同的方法,用实物投影仪展示出来。)
在展示过程中,让学生交流、争辩,在交流各种方法的同时,可能发现:两个数相乘方法和倍数关系时找最大数的局限性。认识到列举法的普遍性。
在学生交流各自的方法后。我会说:老师非常欣赏大家的方法。我这也
有个方法。我们可以把这些数在有方向的直线上表示出来。上面表示6的倍数,下面表示8的倍数。所圈重叠的线段是6和8的公倍数。
(教材中出现了数轴上表示倍数的方法,考虑到学生想不到这种方法,我参与活动中,最后展示这种图形结合的方法。)
【设计理念:探究学习是新一轮基础教育课程改革所倡导的学习方式。在教学中,创设一种类似学术研究的情境,通过学生自主发现问题,获得能力发展和深层次的情感体验。渗透数学归纳思想,体现方法的多样化,个性化。】
(四)、实际应用,回归生活。(预设3-4分钟)
做一个课堂小结,转到学生解决问题中。“大家通过自己的努力,认识了公倍数和最小公倍 。掌握了求两个数的最小公倍数的方法。相信大家一定有很深的收获。让我们带着收获进行下面的练习。相信你一定没有问题。”
课件出示一道生活情境题)
2、学生交流汇报得出:全班可能有48人或24人,最少为24人。
【教学理念:数学教育的出发点和归宿都应当是学生熟悉的现实生活。学生得到抽象化的数学知识之后,应及时把它们应用到新的现实问题中去。】
(五)、全课总结,延伸课外。(预设3分钟)
告诉学生在天文学中也有最小公倍数的知识,让学生边听边看屏幕:
(随着音乐的响起,播放图片。)。
我朗诵:中国人对日食现象的记载,已有将近四千年的历史。在汉代就发现日食出现具有一定的周期。月球从月初到下一次月初是一个朔望月,平均约长30天。太阳从月球轨道的升交点再回到升交点是一交点年,平均约长347天。朔望月与交点年的最小公倍数就和日食的周期有关。
课堂结语:“奇妙吧!如果大家还想继续了解,回去可以上网查找一下相关的资料。让我们带着收获,下课!”
【教学理念:数学与生活有着密切的联系。利用收集到的生活资料,开发出更多的教学资源,让学生整体感知数学在生活中的应用,真正体验“数学来源于生活,又运用于生活”。 学生是带着问号走进课堂,又将带着问号走出课堂?这样的数学教学带给学生的是智慧的行囊,生命的启迪。】