一年级第一学期数学教学计划

句文网    发表于:2023-02-22 19:29:13

第1篇:一年级第一学期数学教学计划

一、教学内容:

1、数一数

2、比一比

3、1—10的认识和加减法

4、认识物体和图形

5、分类

6、11—20的认识

7、认识钟表

8、20以内的进位加法

9、数学乐园

10、我们的校园

二、教学内容分析:

1、每一单元后面都跟有综合练习,形式灵活多样,能很好的起到巩固知识的作用。

2、数学乐园很好的体现主体性原则,能最大限度的调动学生的积极性,培养学生对数学的兴趣

3、重视学生的经验和体验,根据学生的已有经验和知识设计活动内容和学习素材

4、认数与计算相结合、穿插教学,使学生逐步形成数概念,达到计算熟练

5、重视学生对数概念的理解,让学生体会数可以用来表示和交流,初步建立数感

6、计算教学体现算法多样化,允许学生采用自己认为合适的方法进行计算

7、直观认识立体和平面图形,发展学生的空间观念

8、安排“用数学”的内容,培养学生初步的应用意识和用数学解决问题的能力

9、体现教学方法的开放性、创造性,为教师组织教学提供丰富的资源

三、教学目标:

1、熟练的数出数量在20以内的物体的个数,会区分几个和第几个,掌握数的顺序和大小,掌握10以内各组的组成,会读、写1~20各数。

2、初步知道加、减法的含义和加、减法算式中各部分名称,初步知道加法和减法的关系,比较熟练的计算一位数的加法和10以内的减法。

3、初步学会根据加、减法的含义和算法解决一些简单的实际问题。

4、认识符号“=”、“<”、“>”,会使用这些符号表示数的大小。

5、直观认识长方体、正方体、圆柱、球、长方形、正方形、三角形和圆。

6、初步了解分类的方法,会进行简单的分类。

7、初步认识钟表,会人士证实和半时。

8、体会学习数学的乐趣,提高学习数学的兴趣,建立学好数学的信心。

9、认真作业、书写整洁的良好习惯。

10、通过实践活动体验数学与日常生活的密切联系。

四、教学重点难点

重点:1、6—10的加减法

2、20以内的进位加法。

难点:1、10以内数的组成

2、凑10法。这是学生学习20以内仅为加法的计算方法之一,学好这部分内容将对学生计栓产生积极影响。

五、主要教学策略:

1、加强直观教学,增强操作、观察、时间等教学手段的应用。

2、通过动手操作,小组讨论等方法,让学生了解数的组成,以及20以内的家法的计算方法。

3、联系学生的生活实际,培养学生的学习兴趣。

4、加强知识的迁移作用,降低难度,分散难点,减小教学步子

六、教学进度:

1、数一数比一比

2、1—5的认识和加减法

3、1—5的认识和加减法

4、认识物体和图形

5、认识物体和图形、分类

6、分类

7、6—10的认识和加减法

8、期中复习

9、期中复习以及期中测试

10、的认识和加减法

11、的认识和加减法

12、6—10的认识和加减法

13、11—20各数的认识

14、11—20各数的认识

15、认识钟表

16、20以内的进位加法

17、20以内的进位加法

18、20以内的进位加法

19、期末复习

第2篇:一年级第一学期数学教学计划

一、教学目标.

(一)情意目标

(1)通过分析问题的方法的教学,培养学生的学习的兴趣。

(2)提供生活背景,通过数学建模,让学生体会数学就在身边,培养学数学用数学的意识。

(3)在探究函数、等差数列、等比数列的性质,体验获得数学规律的艰辛和乐趣,在分组研究合作学习中学会交流、相互评价,提高学生的合作意识

(4)基于情意目标,调控教学流程,坚定学习信念和学习信心。

(5)还时空给学生、还课堂给学生、还探索和发现权给学生,给予学生自主探索与合作交流的机会,在发展他们思维能力的同时,发展他们的数学情感、学好数学的自信心和追求数学的科学精神。

(6)让学生体验发现挫折矛盾顿悟新的发现这一科学发现历程法。

(二)能力要求

1、培养学生记忆能力。

(1)通过定义、命题的总体结构教学,揭示其本质特点和相互关系,培养对数学本质问题的背景事实及具体数据的记忆。

(3)通过揭示立体集合、函数、数列有关概念、公式和图形的对应关系,培养记忆能力。

2、培养学生的运算能力。

(1)通过概率的训练,培养学生的运算能力。

(2)加强对概念、公式、法则的明确性和灵活性的教学,培养学生的运算能力。

(3)通过函数、数列的教学,提高学生是运算过程具有明晰性、合理性、简捷性能力。

(4)通过一题多解、一题多变培养正确、迅速与合理、灵活的运算能力,促使知识间的滲透和迁移。

(5)利用数形结合,另辟蹊径,提高学生运算能力。

3、培养学生的思维能力。

(1)通过对简易逻辑的教学,培养学生思维的周密性及思维的逻辑性。

(2)通过不等式、函数的一题多解、多题一解,培养思维的灵活性和敏捷性,发展发散思维能力。

(3)通过不等式、函数的引伸、推广,培养学生的创造性思维。

(4)加强知识的横向联系,培养学生的数形结合的能力。

(5)通过典型例题不同思路的分析,培养思维的灵活性,是学生掌握转化思想方法。

(三)知识目标

1.集合、简易逻辑

(1)理解集合、子集、补订、交集、交集的概念.了解空集和全集的意义.了解属于、包含、相等关系的意义.掌握有关的术语和符号,并会用它们正确表示一些简单的集合.

(2)理解逻辑联结词或、且、非的含义.理解四种命题及其相互关系.掌握充分条件、必要条件及充要条件的意义.

(3)掌握一元二次不等式、绝对值不等式的解法。

2.函数

(1)了解映射的概念,理解函数的概念.

(2)了解函数的单调性、奇偶性的概念,掌握判断一些简单函数的单调性、奇偶性的方法.

(3)了解反函数的概念及互为反函数的函数图像间的关系,会求一些简单函数的反函数.

(4)理解分数指数幂的概念,掌握有理指数幂的运算性质.掌握指数函数的概念、图像和性质.

(5)理解对数的概念,掌握对数的运算性质.掌握对数函数的概念、图像和性质.

(6)能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题.

3.数列

(1)理解数列的概念,了解数列通项公式的意义,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项.

(2)理解等差数列的概念,掌握等差数列的通项公式与前n项和公式,并能解决简单的实际问题.

(3)理解等比数列的概念,掌握等比数列的通项公式与前n项和公式,并能解决简单的实际问题.

三、教学重点

1、集合、子集、补集、交集、并集.一元二次不等式的解法四种命题.充分条件和必要条件.

2.映射、函数、函数的单调性、反函数、指数函数、对数函数、函数的应用.

3.等差数列及其通项公式.等差数列前n项和公式.等比数列及其通项公式.等比数列前n项和公式.

四、教学难点

1.四种命题.充分条件和必要条件

2.反函数、指数函数、对数函数

3.等差、等比数列的性质

五、工作措施.

1、抓好课堂教学,提高教学效益。

课堂教学是教学的主要环节,因此,抓好课堂教学是教学之根本,是大面积提高数学成绩的主途径。

(1)、扎实落实集体备课,通过集体讨论,抓住教学内容的实质,形成较好的教学方案,拟好典型例题、练习题、周练题、章考题、月考题。

(2)、加大课堂教改力度,培养学生的自主学习能力。最有效的学习是自主学习,因此,课堂教学要大力培养学生自主探究的精神,通过知识的产生,发展,逐步形成知识体系;通过知识质疑、展活迁移知识、应用知识,提高能力。同时要养成学生良好的学习习惯,不断提高学生的数学素养,从而提高数学素养,并大面积提高数学成绩。

第3篇:一年级第一学期数学教学计划

一、指导思想:

使学生学好从事社会主义现代化建设和进一步学习现代科学技术所必需的数学基础知识和基本技能,培养学生的运算能力、逻辑思维能力和空间想象能力,以逐步形成运用数学知识来分析和解决实际问题的能力。要培养学生对数学的兴趣,激励学生为实现四个现代化学好数学的积极性,培养学生的科学态度和辨证唯物主义的观点。

二、基本情况分析:

1、4班共人,男生人,女生人;本班相对而言,数学尖子约人,中上等生约人,中等生约人,中下生约人,差生约人。

5班共人,男生人,女生人;本班相对而言,数学尖子约人,中上等生约人,中等生约人,中下生约人,差生约人。

2、4班在初中升入高中的升学考试中,数学成绩在100’及以上的有人,80’—99’有人,60’—79’有人,40’—59’有人,40’以下有人,其中最高分为,最低分为。

5班在初中升入高中的升学考试中,数学成绩在100’及以上的有人,80’—99’有人,60’—79’有人,40’—59’有人,40’以下有人,其中最高分为,最低分为。

3、4/5班分别为高一年级9个班中编排一个普高班和一个普高班之后的体育班,整体分析的结果是:

三、教材分析:

1、教材内容:集合、一元二次不等式、简易逻辑、映射与函数、指数函数和对数函数、数列、等差数列、等比数列。

2、集合概念及其基本理论,是近代数学最基本的内容之一;函数是中学数学中最重要的基本概念之一;数列有着广泛的应用,是进一步学习高等数学的基础。

3、教材重点:几种函数的图像与性质、不等式的解法、数列的概念、等差数列与等比数列的通项公式、前n项和的公式。

4、教材难点:关于集合的各个基本概念的涵义及其相互之间的区别和联系、映射的概念以及用映射来刻画函数概念、反函数、一些代数命题的证明、

5、教材关键:理解概念,熟练、牢固掌握函数的图像与性质。

6、采用了由浅入深、减缓坡度、分散难点,逐步展开教材内容的'做法,符合从有限到无限的认识规律,体现了从量变到质变和对立统一的辩证规律。每阶段的内容相对独立,方法比较单一,有助于掌握每一阶段内容。

7、各部分知识之间的联系较强,每一阶段的知识都是以前一阶段为基础,同时为下阶段的学习作准备。

8、全期教材重要的内容是:集合运算、不等式解法、函数的奇偶性与单调性、等差与等比数列的通项和前n项和。

四、教学要求:

1、理解集合、子集、交集、并集、补集的概念。了解空集和全集的意义,了解属于、包含、相等关系的意义,能掌握有关的术语和符号,能正确地表示一些简单的集合。

2、掌握一元二次不等式的解法和绝对值不等式的解法,并能熟练求解。

3、了解命题的概念、逻辑联结词的含义,掌握四种命题及其关系,掌握充分、必要、充要条件,初步掌握反证法。

4、了解映射的概念,在此基础上理解函数及其有关的概念,掌握互为反函数的函数图象间的关系。

5、理解函数的单调性和奇偶性的概念,并能判断一些简单函数的单调性和奇偶性,能利用函数的奇偶性与图象的对称性的关系描绘图象。

6、掌握指数函数、对数函数的概念及其图象和性质,并会解简单的函数应用问题。

7、使学生理解数列的有关概念,掌握等差数列与等比数列的概念、通项公式、前n项和的公式,并能够运用这些知识解决一些问题。

五、教学措施:

1、激发学生的学习兴趣。由数学活动、故事、吸引人的课、合理的要求、师生谈话等途径树立学生的学习信心,提高学习兴趣,在主观作用下上升和进步。

2、注意从实例出发,从感性提高到理性;注意运用对比的方法,反复比较相近的概念;注意结合直观图形,说明抽象的知识;注意从已有的知识出发,启发学生思考。

3、加强培养学生的逻辑思维能力就解决实际问题的能力,以及培养提高学生的自学能力,养成善于分析问题的习惯,进行辨证唯物主义教育。

4、抓住公式的推导和内在联系;加强复习检查工作;抓住典型例题的分析,讲清解题的关键和基本方法,注重提高学生分析问题的能力。

5、自始至终贯彻教学四环节,针对不同的教材内容选择不同教法。

六、教学进度安排:

九月份:集合(2)、子集、全集、补集(2)、交集、并集(2)、集合习题(1)

绝对值不等式(1)、一元二次不等式(2)、不等式习题(1)

逻辑联结词(1)、四种命题(1)、充要条件(1)、习题(1)、

第一章小结与练习(3)

十月份:映射(1)、函数(2)、单调性奇偶性(3)、反函数(2)、习题(1)

指数(1)、指数函数(3)、对数(2)、对数函数(3)、习题(1)

函数应用举例(2)、第二章小结与练习(3)

十一月份:期中复习与考试(8)、数列(2)、

等差数列(2)、等差数列的前n项和(2)、习题(1)

等比数列(2)、等比数列的前n项和(2)、

十二月份:分期付款等应用(2)、习题(1)

第三章小结与练习(3)、复习(12)

元月份:期末复习(8)

XX年9月1日

更多相关内容: