鸡兔同笼教学反思

句文网    发表于:2024-02-15 19:54:53

第1篇:鸡兔同笼教学反思

“鸡兔同笼”问题是我国民间广为流传的数学趣题,最早出现在《孙子算经》中。本节课主要是借助这个题材,培养学生从多角度思考,运用多种方法解决问题的能力;重在研究解决问题的方法和策略上,并在合作交流过程中,积累解决问题的经验,掌握方法,并灵活运用这些知识解决生活中类似“鸡兔同笼”的问题。所以在设计教学过程时我力求渗透以下几点:

一、在放手探究中体会解题策略

学生刚刚接触“鸡兔同笼”问题时,要列式计算往往感到困难,所以我设计了几种由浅入深的方案,先通过儿歌引入算出一只兔和一只鸡的头数和脚数,再逐步增加鸡和兔的只数,学生用自己的生活经验可以口算出总头数和总脚数;然后出示已知头数和脚数求鸡和兔的只数。在放手探究时提供画图、列表、倒推、解方程等等方法,数形结合使学生理解并运用这些方法解决问题。这样不仅关注解决问题的结果,更关注知识的生成;不仅关注优秀学生,更关注全体学生的全面发展。从学习效果来看,确实让全体学生在数学上得到了不同的发展:因为层次不同的孩子选择了适合自己的不同方法,都得到了正确答案。

二、在策略多样化中体验最优方法

学生尝试应用画图法、列表法、假设法和代数法等来解决问题,他们在探究的过程中,根据自己的经验,尝试不同的方法,找到了解决问题的策略。但是让学生认识、理解、运用假设法是这节课的教学重点,也是教学难点。特别是假设全是鸡为什么求出来会是兔,学生很难弄懂。为此,在新课前我用兔子起立学鸡的故事进行铺垫,让学生明确,把一只兔当成了鸡就会少2只脚,用总共少的只数除以每只少的只数就是兔子的只数。尽管假设法的'思路学生刚开始不太接受,但是孩子们体验到当数量很多的时候,画图和列表的方法就行不通了,所以假设法就更具有普遍性,这样就为以后的数学学习提供了一种非常重要的数学思想。所以尽管方法很多,假设法和列方程相对更优。

三、在古题新解中建立数学模式

其实在生活中,鸡兔同笼的现象是及其少见的,我们也没有必要数出它们的头和脚,算出只数。那么这类题型在现实生活中有哪些应用,它的解题方法给我们哪些启示呢?这些才是这节课要渗透的思想。为此我摘录了古今中外很多类

似鸡兔同笼的问题,让学生一一分析。找到这类题目的共同特征,得出共性,总结方法。因此鸡兔同笼不仅仅代表鸡兔同笼,它反映了一种数学模式的建立和数学思想的渗透。学习数学只有在个案的探索中找到了规律性的结论和方法,才能学到有价值的数学。

不过由于一节课时间有限,不可能灵活掌握所有类型,所以有的学生还是有模仿做题的倾向,遇到变式练习时不能正确解决。

第2篇:鸡兔同笼教学反思

在《鸡兔同笼》的教学过程中,我主要体现的教学思想是:培养深入思考的意识,养成不断追问的习惯,形成数型结合的策略,主张奇思妙想的胆识。

1、给学生创设一个开放、自由的空间,让学生真正成为课堂的主人。课堂上,我允许学生用自己喜欢的方法解决问题,并给学生搭建一个展示的舞台,充分张扬学生的个性。才使课堂出现争先恐后、积极主动参与解决问题的场景。

2、多种数学思想、方法的渗透,提高了学生的解题能力。本节课学生不仅学会了基本的画图、列表这两种解决问题的方法,还学会了假设、折半、金鸡独立、兔子起立等巧妙的解决问题的方法。受到了多种数学思想方法的熏陶。培养了孩子解决问题的能力,提高了孩子的思维水平。

3、师生交流充分,交流作用发挥明显。课堂上,学生各自发表自己的意见,倾听别人的.意见。互相评价,取长补短。渠道畅通,课堂是流动的,有生命的,学生的交流如春雨滋润着孩子的心灵,使学生的思维在交流中不断提升。

4、教学设计重点突出,使学生掌握了基本的解决鸡兔同笼问题的方法。课堂上,虽然解决问题的方法很多,但是画图法、列表法是解决问题的基本方法。在课堂上教师重点让学生展示了这两种方法,并进行了师生质疑,使基本方法人人都会,其他方法作为开阔学生的思路,简化处理。使不同的学生学不同的数学,不同水平的孩子在课堂上都有所收获。

5、教学中存在着不少问题:

(1)预设学情的初知不足,起点太高,在出示例题时,隐藏的条件没有说明,导至后面解题中鸡、兔各有几只脚都不知;

(2)课堂组织的有效管理不到位,导至许多学生没有认真倾听、认真独立思考,练习不会,教学内容完成不了。

6、课后给我留下一个深思的问题:

(1)课堂中是看老师的表现还是学生的表现?

(2)孩子在课堂中是否学的快乐?

(3)孩子是否学的有效?

第3篇:鸡兔同笼教学反思

鸡兔同笼问题是我国古代数学名著《孙子算经》中出现的广为流传的数学趣题。教材首先通过富有情趣的古代课堂,生动地呈现了在《孙子算经》中记载的“鸡兔同笼”问题,并通过小精灵的提问激发学生解答我国古代著名数学问题的兴趣。

本节课我依然遵循数学学习的规律,从较简单的问题入手,由易入深,先让学生尝试解决,熟悉此类题型的一般思路,再让学生以填表的方式初步体验鸡兔同笼情况下两种动物的只数和脚的数量之间的关系,同时探索随着鸡兔只数的变化,脚的数量也跟着变化的规律。通过展开小组讨论,引导学生从表格中找出等量关系式,运用以往学过的方程知识,用方程解决鸡兔同笼的问题。然后采取自学的方法体验鸡兔同笼中鸡兔的头数和脚的只数关系到用“假设法”经历探究过程,此环节是本课的重点,学生从体验、尝试到此处的讨论、汇报,个人或集体的智慧在这里得到展现,最后了解古人的解法“抬腿法”,然孩子感受古人的无限智慧。方程解、假设法对于大部分学生来说至少有一种方法是他自己理解或掌握的。

在这节课的`实际操作中由于我课前准备不够充分,或者驾驭课堂的能力有限,太流程化,没有顾及到每一位学生。胡子眉毛一把抓,没有突出重点。比如孩子们在表演网络解决法事先准备的就不够充分,导致当堂搞砸。在学生汇报的过程中没有做到机敏地倾听和机智地诱导,对于学生的列式没有指明理由,因此感觉学生在全班交流的过程中出现不能理解的情况。由于此处设计的失误,导致后面的方程解的方法时间不够,课堂巩固练习也没能很好的展开。我想这也可能是我在设计教案时并没有准确考虑到学生自身的实际认知水平,本课内容安排过多。如果下次再次教学鸡兔同笼,我想我会把假设法和列方程解的方法分成两个课时,争取让大部分学生都能从多角度思考,运用多种方法来解题。小组合作学习中我觉得自己调控不到位,如时间的把握、学生合作过程的控制、合作学习的效果等;今后在课堂教学中,我会加强小组合作的建设,让小组合作学习有目标,有过程,有结果。

反思本节课的教学,在以后的教学中我会扬长避短,不断突破,使教学走上一个新台阶。

第4篇:鸡兔同笼教学反思

通过课前对学生的调查,我发现有一部分学生接触过“鸡兔同笼”问题,但多数学生对独立学习“鸡兔同笼”问题存在必须的难度。在采用“先学后教,当堂训练”的课堂教学模式时,我为学生设计了导学案,让学生在尝试,探索,交流合作中体会“鸡兔同笼”问题的基本结构特征,经历用不同的方法解决“鸡兔同笼”问题的过程,初步构成解决此类问题的一般性策略。

一、学案导学,自主探索

“鸡兔同笼”向学生带给了现实、搞笑、富有挑战性的学习素材,借助我国古代趣题“鸡兔同笼”问题,让学生在课前自学,我为学生设计了导学案,辅助学生应用画图法、列表法、假设法、代数法等,从多角度思考,运用多种方法解题,使学生在具体情境中,根据自己的经验,逐步探索不同的方法,找到解决问题的策略,为课堂上小组合作探究带给素材,难得的是有学生运用了抬腿法来解决这个问题,抬腿法只用了简单的两个式子,但是正如学生所说这也是最难理解的一种方法。学案导学,自主探索,让学生在自学后能真正把所学的数学知识技术应用到生活中实际问题中去,用数学的眼光看待身边的`事物,感受数学的价值。

二、合作交流,主动建构

在解决“鸡兔同笼”问题时,教材展示了学生逐步解决问题的过程,有猜测、列表、假设和方程解。其中假设和列方程解是解决该类问题的一般方法。在设计时,我思考到一部分后进生的实际,安排了画图法作为学生理解假设法的基础。让学生在课前自己尝试着画一画,课中在教师的引导下分析画图法的思路,进而帮忙同学们理解假设法中的难点,让学生能清楚的表达用假设法解决鸡兔同笼问题的思考过程。在分析列表法的过程中,有意让学去观察列表法中的哪几种状况是不可能出现的,进而将列表法与假设法相关联起来。可能有一部分学生会选取用列方程的方法来解决该类问题,因为用方程解这类问题的相等关系是十分简单和清晰的,在设鸡或兔的其中一个只数为x,则另一个只数能够用含x的式子来表示,这个过程实际上也运用了假设法。然后根据鸡、兔的只数与脚的总数的关系列出方程。在方程列好后,能对解答过程进行比较,让学生明白设脚数多的这个量为x,能使解答过程变的简便。

在实际课堂教学过程中,学生隐约感觉到了这些方法间的联系——假设法,只是学生不敢说出来,在老师的引导下,他们才说出了这些方法间的联系,比较难得的是学生基本能说出各种方法的优缺,懂得用自己真正理解的方法去解答。

三、当堂训练,拓展延伸

在解决“鸡兔同笼”问题时,学生选用哪种方法均可,不强求用某一种方法。学生只要懂了,在后面的问题中,他自然而然会用到假设和方程的方法。在当堂训练中我安排了3个层次的资料。第一个层次有数量关系分析辅助,第二个层“鸡兔同笼”问题的基本型,第三个层次是选做题。让学生解决不同难度层次的问题能够检验学生对“鸡兔同笼”问题解决方法的掌握程度。这样的设计能够使潜能生不至于由于问题太难而束手无策,也不会使优等生因为问题太易而简单地套用方法。

在实际操作过程中,这也是本课时最大的遗憾,不是练习的设计有问题,而是课堂教学资料太多,以致教学时间不足,使得练习的时间没能得到保证。

本节课的成功之处:

一、注重解题策略的多样

教学中,我引导学生从多角度思考问题,运用了画图、列表、假设、代数等多种方法解决问题,促进学生数学思维潜力的发展。

二、注重数学思想的渗透

我在引导学生运用多种方法解决问题所采用的策略中,有意识的渗透了数学思想。如:将“鸡兔同笼”的原题数据改小中渗透了化繁为简思想,“列表”的策略中便渗透了变化和函数思想,“算术法”的策略中渗透了假设思想,“方程”的策略中渗透了代数思想等等。

三、注重学生思维的培养

在导学案中,我让学生依次经历画图、列表、假设、方程这四种解决问题的方法,并注重了这些方法之间的联系和层次,有意识的对学生进行了思维培养。

四、注重数学文化的培养

教学中,我把《孙子算经》的原题和特殊解法搬到课堂中来,尤其是后面把腿的只数减少一半后,这都是一种数学文化在现代课堂当中的一种深刻地体现!更使他们感到学数学不是枯燥乏味的,而是风趣幽默、有情搞笑的一门学科。

第5篇:鸡兔同笼教学反思

鸡兔同笼问题是我国民间广为流传的数学趣题。最早出现在《孙子算经》中。北师大版五年级上册教材对于这个问题的解题设计,是把列表法作为主要的解题法,但教参中又提到了画图法、假设法、方程法等,提倡算法的多样化,明显要求老师在教学中,这几种方法都要提到。经过对教材的解读和同科组几位老师商讨,觉得这几种方法归根到底都是假设法,画图法和假设法更是同出一辙,一个是直观的假设,另一个是把直观的假设抽象成数字符号表示而已。考虑到方程法学生不会解,所以决定以教材为重点,先用一个课时上列表法,再用一个课时上画图法和假设法,用两个课时上完。如果过中有学生用到方程解的,也给予肯定。

上课之前,我们都觉得学生对于画图法和假设法应该较为容易理解,通过教学后发现,学生对于列表法,特别是对逐一列表法,学生们普遍都能理解掌握,对于跳跃式列表法、取中列表法也有大部份的学生能够灵活运用。反而是假设法,虽然有画图法辅助理解,相差的腿数,为什么要除以鸡兔的腿数差,学生还是难以理解。授完课之后,我们还发现了另外两个更为严重的'问题:一是学生在学了假设法后,觉得假设法比列表法的书写来的简便,更喜欢用假设法,而他们又没能理解透彻这种方法,常常用相差的腿数除以鸡腿数或兔腿数,导致解题错误。二是学生虽然懂得用列表法解决真正的鸡兔同笼问题,一但换成另一个内容的类似鸡兔同笼的问题时,学生却不懂填表头。如:(1)新星小学“环保卫士”小分队12人参加植树活动。男同学每人栽了3棵树,女同学每人栽了2棵树,一共栽了32棵树。男女同学各有几个?(2)小白兔拔萝卜,雨天一天拔12个,晴天一天拔20个,小白兔共拔了112个萝卜,平均每天拔14个,小白兔拔萝卜有几天是雨天几天是晴天?

出现这些问题,我想这也可能是我在设计教案时并没有准确考虑到学生自身的实际认知水平,本课内容安排过多。如果下次再次教学鸡兔同笼,我想我会把列表法与表头的填写方法作为重点来上,其他的方法根据学生的认知水平适当处理。

第6篇:鸡兔同笼教学反思

本节课通过创设生动的问题情境,让学生投入到解决问题的实践活动中去,自己探究,经历数学学习的全过程,从而体会假设的数学思想的应用与解决问题的关系。在学习中我注重鼓励每一个学生参与学习过程,用适合他们的方法解决问题,同时也体验解决问题的不同方法。

“鸡兔同笼”以前是属于奥数类型的题目,如今编入教材,对学生尤其是基础不好的学生来说有一定的难度,特别是使用假设法解答时,学生理解起来很难,为此我先采用列表法来帮助学生理解,把抽象的知识直观化,然后再引入假设法。对于理解能力较差的学生来说,列表法数据较大,假设法又不易理解,所以我也将抬脚法引入课堂,希望能够为学生提供解决问题的多种思路。

对于本节课的学习,部分学生已经在课外辅导班学习过了,课堂上这些学生的'积极性很高,也能够深刻理解鸡兔同笼的意义,但这就造成了个别程度较差的学生偷懒现象,所以在接下来的练习课上要更多的关注那些做题速度较慢、思维不清晰的学生。

第7篇:鸡兔同笼教学反思

“鸡兔同笼”问题最早出现在我国古代一本数学著作《孙子算经》中,虽历经1500多年,该问题解决办法有多种,是它魅力所在,所以一直是人们津津乐道的有趣的问题。四年级学生学习主要是用假设法解答,而列表法是假设发的基础,单独列表麻烦;抬腿方法作为方法的补充,只作为了解,由于有局限性,用得少。

1、调动学生积极性

课件出示图画鸡兔同笼,引起学生兴趣,感觉好玩,勾起探知的愿望。接着用古文叙述题目,并说明题目的时间是1500年前,现在我们需要帮古人解答问题,学生感到好奇,争强好胜心陡然升起,学习劲头十足。

2、体现方法多样性

为了研究方便,我变换题目数字,把例题改为8只头,26条腿,数字变小好想像。列表法学生推理填写,数字小可以得出答案。

假设法对学生尤其是基础不好的学生来说有难度,学生理解起来很难。我先对列表数字分析、比较,为后面的假设法做好铺垫。我就推荐用中间列表法,发现鸡4只,兔子4只,腿就一共有24条,再进行增加或减少,最后得到了3只鸡,5只兔。学生的速度就加快了。另外,引导学生透过对表格的理解,利用假设法来解决问题。

3、画示意图帮助理解

画图验证:先画8个圆圈表示8个头,再在每个动物下面画两条腿,8只动物只用了16条腿,还多出10条腿,把剩下的'10条腿要给其中的几只动物添上呢?(5只动物分别添2条腿)。这5只就是兔子,另外的3只就是鸡。画图的思考过程实际也就是假设方法的思考过程。

虽然很难,但我相信,只要学生喜欢了,那么再难的数学题都不是问题了。本节课,在整个课堂中,在问题得到解决的同时学生也体验到了成功的喜悦,感受到数学知识的价值和数学学习的乐趣。

第8篇:鸡兔同笼教学反思

各位老师:

大家好!

我说课的内容是六年级上册数学广角《鸡兔同笼》问题。

一、教材、学情分析

首先我进行一下教材分析和学情分析。

教材分析:

“鸡兔同笼”问题是我国民间广为流传的数学趣题,最早出现在《孙子算经》中。教材在本单元安排“鸡兔同笼”问题,一方面可以培养学生的逻辑推理能力;另一方面使学生体会代数方法的一般性。教材的编排有以下特点:1、教材首先通过富有情趣的古代课堂,生动地呈现了在《孙子算经》中记载的“鸡兔同笼”问题,并通过小精灵的提问激发学生解答我国古代著名数学问题的兴趣。2、注重体现解决“鸡兔同笼”问题的不同思路和方法。3、让学生进一步体会到这类问题在日常生活中的应用。

学情分析:

认知分析:对于六年级的学生他们已初步接触多种解题策略,会一些基本的解决数学问题的方法。

能力分析:学生已初步具备一定的归纳、猜想能力,但在数学的应用意识与应用能力方面需进一步培养。

情感分析:我班共33人,多数学生对数学学习有一定的兴趣能够积极参与研究,但在合作交流意识方面,发展不够均衡,有待加强;少数学生的学习主动性不够强,需通过营造一定的学习氛围,来加以带动。

基于对教材的理解和分析,结合学生的知识经验和生活经验,遵循课程标准精神,我确定了以下三维目标与重点难点。

二、目标分析:

知识与技能目标:

1、了解“鸡兔同笼”问题,感受古代数学问题的趣味性。

2、尝试用不同的方法解决“鸡兔同笼”问题,并使学生体会代数方法的一般性。

过程与方法目标:

在解决问题的过程中培养学生的逻辑推理能力。

情感态度与价值观目标:

1、使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。

2、让学生体会到数学问题在日常生活中的应用,进而让学生体会数学的价值。

教学重点难点:

教学重点:以鸡兔同笼问题为载体,培养学生多角度思考数学问题的思维方式。

教学难点 :理解数学知识与实际生活问题的联系,掌握利用数学方法解决实际问题的策略。

三.教法和教学手段分析

针对六年级的学生年龄特点和心理特征,以及他们现在的知识水平。采用启发式,小组合作等教学方法,让尽可能多的学生主动参与到学习过程中。根据优中差生采取分层教学。课堂上教师要成为学生的学习伙伴,与学生一起体验成功的喜悦,创造一个轻松,高效的学习氛围。

为了更好地展示数学的魅力,结合一定的多媒体辅助手段,充分调动学生的感官,增加形象感与趣味性,腾出足够的时空和自由度使学生成为课堂的主人。

四、学法指导

由实例引入,在借助学习例1同时,向学生渗透化繁为简的思想,使学生通过猜测、列表、假设或方程等方法来解决问题,在师生互动中让每个学生都动口、动手、动脑。并专门为学困生创设他们展示的空间和时间。培养每个学生学习的主动性和积极性。

五、教具学具准备:

多媒体课件及每小组一份按顺序填写的表格图。

六、教学流程:

本课我共设计了情境导入、探索新知、巩固新知、课堂小结、家庭作业五个环节。下面我就具体说一说每个环节。

(一)情境导入。

首先用课件出示第112页的情境图,我引导:“看,图上的个个学生紧锁眉头,还有一个学生急得头上都流汗了,他们正在为一个什么问题冥思苦想呢?我们能不能帮帮他们?”这时学生就会发现,情境图旁边的原题:今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?(目的是引导学生发现问题并激发学生解决问题的欲望)

接下来我让学生说说题的意思,再课件出示这道题的今意:笼子里有若干只鸡和兔。从上面数,有35个头,从下面数,有94只脚。鸡和兔各有几只?(目的是确保学生正确理解题意,保持对该问题的好奇心。)

这就是我们今天要研究的问题“鸡兔同笼”问题。这样就揭示了课题并(板书课题)这样就很自然地进入了第二个环节。

(二)探索新知

探索新知是本节课教学的重点环节,也是理解的难点,教学中我为了体现化繁为简的思想,我提出:“为了便于研究,我们可以先从简单的问题入手,我们把题中的35个头和94只脚改成8个头和26只脚。这样就变成了例1。

(课件出示例1)笼子里有若干只鸡兔。从上面数,有8个头,从下面数,有26只脚,鸡和兔各有几只?先引导学生理解分析题意:请同学们默默地读这道题,思考一下:从上面数,有8个头是什么意思?(指谁的头?)从下面数,有26只脚是什么意思?问题是什么?这里还隐藏了什么条件?(目的是引导学生说出鸡两只脚,兔四只脚。)

鸡和兔各有几只呢?我们不妨猜想看看。(我随着学生的猜想板书)

接下来介绍列表法:

刚才我们是随意猜的,其实我们还可以有顺序的猜。

我课件出示113页的表格,并指出:老师给每个小组也发了一张同样的表格,我让学生先进行分工,再共同完成表格,并指名学生汇报。

我总结:这其实就是按顺序列表的方法。这样我们也就用列表法解决了这个问题。请同学们仔细观察比较表格,从表格中你能发现什么?把你的发现和同桌同学说一说。(学生同桌交流)再指名汇报。

学生的发现我预设了4种情况:

1、鸡在减少,兔在增加,脚也在增加。

2、每减少一只鸡,增加一只兔,脚的总只数增加两只。

3、每减少一只兔,增加一只鸡,脚的总只数减少两只。

4、鸡和兔的总只数没有变。

为了引出算的方法,我作了如下导语:如果头数太多,还用猜的方法和列表的方法是不是太麻烦了,那该怎么办呢?能不能用算的方法呢?小组讨论,还有什么方法?

学生在讨论期间,我在组间巡视并加以适当引导。如果有的学生茫然无绪,我启发学生:“假设笼子里都是鸡或者都是兔,脚数会发生什么变化呢?”从而引导学生解决问题。(这样以小组为单位,每个学生都经历知识的形成过程,老师也加入了孩子们探讨的过程。并对学习有困难的学生加以点拨。)

先让用算术方法计算的学生汇报。我要求学生清楚的表达思考过程和解决方法。先让小组长说,再让中等生说。根据我班的实际情况,我预设到会有几个学困生还是弄不明白。所以我采用画图的方法特定帮助这部分学生理解。

(我边作图边讲解)

我先画出8个小圆圈就代表8只小动物,假设全是鸡,每只鸡有两只脚,这样就先画16只脚,指一名学困生列出算式:8×2=16(只)而题目中说共有26只脚,还少多少只脚,再指一名学困生列出算式:26-16=10(只)这说明有一些兔子被算成了鸡,而每只兔子算成了鸡就少了两只脚,列出算式:4-2=2(只),10里面有几个2,列式:10÷2=5,于是我们就给其中的五只鸡都添上两只脚变成兔,这样就有26只脚了。5只鸡变成了5只兔,这里的5就是兔的只数。这里我预设到学生解答时很有可能把鸡和兔的只数答反了,所以我着重强调这里的5是兔的只数。

假设8只小动物都是兔,怎么办呢?(我要求学生合作完成)

(我的设计意图是对于学困生需要老师适时地站出来引领学生进行探索,通过一些有效的数学模型,来帮助学生建立一个解决问题的台阶,使他们掌握方法,体验成功。为了保护学生的自尊心,他们感觉不出自己是学困生,因为课堂上也有他们的精彩表现,只是和优等生的难度不同,他们只是老师心目中的学困生,而不是学生眼中的学困生。)

我指出:这两种方法都是假设的,一种假设的全是鸡,一种假设的全是兔。像这样的方法,我们可以称它“假设法”。

接下来我让用方程做的同学说出思考过程和解题方法。再让学生(三)说算理。

(设计意图是因为学生在五年级时已经对于列方程解决问题有一定的基础,根据本班学生情况和已有的知识经验,这个方法数量关系明确学生容易理解。所以我就让学生自己去尝试。)

(三)小结

用多种方法解答“鸡兔同笼”问题。

我引导学生比较这些不同的方法,你比较喜欢哪种方法?能说说你的理由吗?

(我的设计意图是通过学生比较不同的方法,让学生对策略作出选择,在交流中,让学生感受到不同方法的思维特点,感受到方程法的一般性。)(同时这个环节的设计目的是让每个学生建构自己的知识体系)

(四)学以致用

用自己喜欢的方法解决《孙子算经》中鸡兔同笼的`原题.(目的是一方面 《孙子算经》中的鸡兔同笼问题,另一方面让学生在解决该问题的过程中进一步巩固前面所学的解题方法。)

出示公园划船的图片和题: “做一做”中的第2题。

学生用自己喜欢的方法列式解答。并汇报思考过程。

(设计意图是学生在解决实际问题的过程中对假设法和方程法有了初步体验,更有利于学生今后独立运用策略解决实际问题的能力。

(五)作业

必做题

练习二十六:1、2、3、5题

选做题

课外阅读:阅读课本114页内容,了解古人是怎样解决“鸡兔同笼”问题的。

古代趣题

一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁?

(设计此题的目的是一方面让学生利用本节课所学知识解决生活中的数学问题,另一方面 对学生进行品德教育。)

六、板书设计分析:除课题外,其他板书都是随学生的汇报而写的。(设计目的是让学生体验自己的回答和尝试竟能成为老师板书的内容,激发学生勇于发言的信心。)

鸡兔同笼教学反思

数学不仅仅要让学生学会计算、解决实际问题等,还要通过这些知识的学习让学生的思维得到锻炼。鸡兔同笼问题就是这样一种问题,在生活中,鸡兔同笼的现象是很少碰到,没见过有人把鸡和兔放在一个笼子里,即使放在一个笼子里又有谁会去数他们的脚呢?直接数头不就行了?那么是不是说“鸡兔同笼”是一个完全没有价值的数学问题呢?显然不是,鸡兔同笼问题,是让我们通过鸡兔腿数的变化,在这种变化中寻找不变的规律,并采用有效的手段来理解数学问题的过程。以下是我上完课的几点体会:

一、大敢转换情境,提高情境“知名度”。

生动有趣的数学问题情境,能让学生愉快的探索数学,享受数学带来的乐趣。课堂教学中教师要创设学生喜闻乐见的教学情境,使学生始终处于一种良好的愉悦的氛围中,从而调动学生学习数学的兴趣,发展学生的思维能力。还要注重对学生进行引导,让学生通过观察、操作、讨论、思考发现并掌握知识,时刻把学生推到学习的主体地位,在一个恰当的主题中学习数学,发展能力。基于这一点,本节课的内容安排在“数学与生活” 当中,用在生活中经常遇到的一些问题,来引入(幻灯出示:)

1、小明的储蓄罐里有1角和5角的硬币共27枚,价值5.1元,1角和5角的硬币各有多少枚?

2、12张乒乓球台上同时有34人正进行乒乓球比赛,正在进行单打和双打比赛的球台各有几张?

类似于这样的问题,我们的祖先早在1500多年前就已经开始研究了,再课件出示《孙子算经》及鸡兔同笼问题,但同时又聪明地把数改小了:今有鸡兔同笼,上有八头,下有二十二足,问鸡兔各几何?一石激起千层浪,鸡兔怎能同笼?学生的探究欲望马上调动起来,这时,又让学生了解“经典”,感受 “经典”。

二、鼓励参与,在合作中提高学习效率。

根据《新课程标准》在课程设置中强调学生是学习的主人,在学习过程中尽可能多的为学生提供探索和交流的空间,鼓励学生自主探索与合作交流。本节课中,我主要通过创设现实情境,让学生投入到解决问题的实践活动中去,自己去研究、探索、经历数学学习的全过程,从而体会到假设的数学思想的应用与解决数学问题的关系。学生能够积极地思考,积极地合作,积极地探讨,充分地发挥了小组的作用,兵教兵,通过学习使学生认识到数形结合的重要性,提高学生分析问题和解决问题的能力。大部分学生学会了,这是很让我感到激动的,因为毕竟鸡兔同笼问题比较难。

三、关注每一个学生的发展,提高课堂教学的生成性。

由于学生原有认知背景的不同,他们对解答本课时的题目存在较大的差异,所以,在同一问题中,学生的认知水平也有不同。在教学的过程中,不能提出统一的要求,要允许不同的学生采用不同的解题方法。本节课,师生共同经历了六种不同的方法:逐一列表法、取中列表法、假设法、列方程、画图法及古人的砍足法,最后比较哪种算法比较好。这样教学既培养了学生探究能力和小组合作能力,又体现了算法多样化与优化,也让不同的学生在同一节课中都有不同程度地提高。

总的来说,本节课从学的角度呈现学习内容,合理安排教学过程,提供操作材料,拨动学生心弦,把学习的主动权交给学生,让学生在合作学习的活动中主动完成知识的建构过程。因此,在整堂课中,学生学得兴趣盎然,在问题得到解决的同时体验到了成功的喜悦,感受到数学知识的价值和数学学习的乐趣。但在教学时间的控制上还略显紧张,一些环节的处理还应该在从主次的角度更好地进行设计。

但教学中也存在着很多问题,反思如下:

1、小组合作学习中教师如何调控才能进一步提高合作学习的效率,如时间的把握、学生合作过程的控制、合作学习的效果等;

2、学生汇报时,要多培养学生质疑能力,听不明白的及时向小老师提问,及时解决不懂的问题。

3、要注重培优辅困,特别是学困生的辅导如何在课堂教学中落实,使他们通过教师的引导取得明显的学习效果,真正落实新课标提出的“不同的人在数学上得到不同的发展”目标。

第9篇:鸡兔同笼教学反思

《鸡兔同笼》问题教学对于四年级的学生来说有一定的难度,课前我对我班的学生进行了调查。一小部分学生接触过鸡兔同笼问题,但对于多数的学生来说,学习《鸡兔同笼》可能会有一定的难度。所以在这节课当中,我决定主要借助教师引导探究这个手段,让学生弄懂鸡兔同笼问题的基本解题思路。

本节课,在整个课堂中,在问题得到解决的同时学生也体验到了成功的喜悦,感受到数学知识的价值和数学学习的乐趣。但在教学时间的控制上还略显紧张,一些环节的处理还应该在从主次的角度更好地进行设计。

对于本节课我个人认为在设计上还是有一定优势的,主要体现在以下几点:

一、好的开端是成功的一半,抓住知识上的联系激发了学生的学习热情。然后以一个数据比较小的鸡兔同笼问题,来引导学生,经历列表法,探讨假设法等多种解题策略和方法,并用教具和多媒体课件的展示,帮助学生比较直观形象的理解解题方法,从而更好的突出本节课的重点。

二、由于“鸡兔同笼”问题在小学五年级学稍复杂的方程时出现过,也有小部分学生可能在数奥书上见过,会做。而对于四年级的孩子来说,大部分学生不是很会做,因此在备课时我充分考虑到这个情况,所以在教学本课的重难点用假设法解答“鸡兔同笼”问题的第一部分假设全是鸡时以老师引导对学生进行分析,加以教具演示,帮助学生理解这种方法。然后学习假设全是兔时,以学生根据刚才的学习和理解自己独立完成并说明对每步理解,再用课件展示分析过程。通过这两步的学习,大部分学生应该基本能利用假设法来解答“鸡兔同笼”问题。

三、在这节课上我没有讲古人用的“抬脚法”的方法。这主要是依据学生的接受能力和时间上的'考虑,本来这节课讲的方法就很多,特别是假设法学生理解就有困难,再将“抬脚法”讲了,可能学生消化不了,以其都没弄清楚,还不如分成两节课来讲,别外就是时间问题,如果把“抬脚法”讲了,可能学生练习的时间就少了,没办法有效的进行课堂巩固。因此,这节课我没有讲古人用的“抬脚法”。

四、我认为本节课的重难点都应该是在用假设法来解决“鸡兔同笼”问题上,在这部分的设计上,我看了很多资料和课例。都说得较为简单,并有不同的说法。在假设全部都是鸡这里,用26-16=10条腿,这里应该说是“多10条腿”还是“少10条腿”呢,教材上只是简单的说“这样就多出了10只脚”,通过我的分析,我觉得以假设后的腿与实际比学生较容易理解,当说到这个问题时可以直接说“比实际少了10条腿,为什么少呢?是把兔当成鸡算了,”这里是把兔假设成了鸡,肯定应该是少算10条腿。如果说成“多10条腿,为什么多呢?”就不好给学生解释了。这样也便于同前面的把一只兔当成一只鸡算就少2条腿联系起来。

不足之处:

本节课在时间的安排上不够合理,导致本节课我并没有完成我预设的内容。本节课重在方法的渗透,学生必须经历多种方法解决该类问题的一个过程,而这个过程是绝对不能走过场的,必须实实在在的引导,这样学生必须有足够的时间,不断调整解题策略,逐步探讨出不同的方法,找到合理解决问题的策略,这样一节课的时间就显得不够用了,导致最后没有时间来解决生活中更多类型的实际问题。

第10篇:鸡兔同笼教学反思

《鸡兔同笼》问题向学生提供了现实,有趣,富有挑战性的学习素材,借助我国古代趣题“鸡兔同笼”问题,教学时激发学生展开讨论,应用猜测,列表,假设等多种方法,使学生在具体情境中,根据自己的经验,逐步探索不同的方法,找出适合自己的解题策略,并在合作交流学习的过程中积累解决问题的经验,掌握解决问题的方法,使学生共同学习,共同进步,共同提高,把所学的知识运用到生活中,用数学的眼光看待身边的事物,体会学习数学的价值。这节课主要体现以下几个方面:

1、充分调动学生的积极性。

当问题提出后,我并没有急于讲解如何做的方法,而是先让学生独立思考,再在小组内交流,最后全班共同研究讨论。使同学们在民主、和谐的氛围中开拓了思维,实现了运用多种方法解决问题的目的。体现了学生是学习的主人。

2、关注每一个同学的发展。

由于学生原有认知背景的不同,他们对解答本课时的题目存在较大的`差异,所以,在同样的列表中,学生的认知水平也有一定的层次。但在教学的过程中,我并没有提出统一的要求,允许不同的学生采用不同的解题方法。在交流时,有些学生用逐一列表的方法,也没去指责他们,而是肯定他们想出好的方法;对于比较优秀的学生,让他们根据题目的条件灵活选择适当方法。这样做的目的,不同的学生在同一节课中就会都有不同程度地提高。

“鸡兔同笼”在以前是属于奥赛典型题,如今编入新课程教材六年级上册中。对学生尤其是基础不好的学生来说有一定的难度,特别是用假设法解答,学生理解起来很难,为此我渗透数形结合的思想方法,采取画图的方法来帮助学生理解,先画8个圆圈代表8只鸡,每只鸡画2只脚,这样就有16只脚,缺了10只脚,再把其中的几只鸡每只添上2只脚就变成了兔子,所以有5只兔子。这样把抽象的知识直观化了,学生很快理解了这种方法。

3、体会到数学就在我们身边。

通过学习,使学生知道了假设的数学思想不仅可以解答古代趣题——鸡兔同笼问题,还能解答我们身边的问题。拓宽学生对鸡兔同笼问题的认识,帮助学生建立数学模型,掌握解决这一类问题的方法。

另外在实际教学中遇到的困惑:

1、学生在学习例题时往往会出现刻意模仿老师解题方法而不是真正了解假设法的解题思路,体会不了其中转换的数学思想,进而出现了会列算式但不知道算式的真正含义。

2、对于课堂上学生独立思维的训练,也就是我们常说的“扶”与“放”的矛盾,由于本节课是一节逻辑思维很强的新授课,对于一部分程度较好的学生,“放”开思考与探索学生完全能独立完成,但对于程度较弱的学生,“放”只能使他无从下手,糊涂的上完一节课。那么对于本节课堂如何才能做到两头兼顾呢!

3、《数学广角》是一般是不作为考察范围之内的,那么教师在教学本单元教学应该怎样对于课堂定位,知识点应该教学到什么程度也是很多老师在实际教学中的一个困惑。

第11篇:鸡兔同笼教学反思

一、教学目标达成的反思

《数学课程标准》指出数学教学活动必须建立在学生认知发展水平和已有的知识经验之上,以生为本,已学定教,顺学而导,要让学生成为课堂的主人,尊重学生,还课堂给学生,就必须认真钻研教材,领悟编者意图,教材知识地位及前后联系,认真研究学生,了解学生已经知道了哪些知识和解题策略。在最初设计这课时,我把列举法中的表格画在黑板上,让学生根据条件鸡兔共有8只,先猜测鸡兔可能各有几只填入表格中,再根据另外一条件总脚数是26只,通过验证得到笼子里鸡兔到底有几只,但在我巡视时发现大部分学生都在根据条件无序的猜测,有的同学把猜测的过程简单的记录在草稿纸上,有的干脆就不记录,通过不断地调整最终找到了答案,这样就不能形成完整的表格,更不能引导利用表格发现猜测过程中的规律,用时过长且无法自然的过渡到假设法。所以再次试教,我把这一环节及时做了调整,要求学生把猜测的过程记录在课本的表格上,这样大部分学生会按照一定的顺序进行猜测填表,有的同学逐一填表,有的没填第一列和最后一列,有的跳跃填表,还有同学填出答案后不再继续填表,出现了这么多种不同的结果,反映了不同学生的不同思维高度,既达到了列表教学目标。

二、教学过程执行的反思

这节课教学过程的主线是:出示问题—分析问题—解决问题—建立模型—推广应用。整个教学过程学生自学与他人交流相结合,老师引导与学生探究相结合,用问题推动学生不断思考,让学生参与知识形成的过程,注重学生亲身体验感受。列表法的优点是方法比较简单,但数据比较大时效率低,不能作为解决鸡兔同笼的一般方法进行推广,是不是在教学过程中可以一带而过呢?通过对教材的研究和分析,绝对不能一带而过,表中蕴含了鸡兔头脚变化的规律,把一只鸡看成一只兔就会增加两只脚,这样就和假设法对应起来了,充分分析表格规律,为假设法的教学奠定了基础,在教学假设法时水到渠成降低了难度。在列表时,学生势必要计算出总脚数,在求总脚数时利用到了方程法的等量关系,列表法是基础是纽带,将不同的解决方法联系起来,形成知识的完整体系。在讲授假设法时,学生最不容易理解4-2=2(条)的意义,试教后决定在充分挖掘表格中的规律,小组合作、师生共同探究的同时,以课件演示为辅助手段,让学生明确假设笼子里全是鸡,这时就比实际少10只脚,少了的脚其实是把兔子看成鸡时兔子少的脚,把一只兔子看成一只鸡少两只脚,所以10里面有几个2就有几只兔子。将学生的`认知经验和思维过程转化为数学算式,突破了难点,形成了解决问题的策略,提高学生的思维水平和推理能力。接着又通过拓展练习让学生感觉到数学源于生活,把所学的数学知识应用到生活中去,用数学的眼光看待身边的事物,体会数学就在身边。

三、课堂教学中的一些不足

本节课是在试教的基础上基本实现了预定的教学目标,同时存在着很多不足

1、由于是借班上课,对学情了解不充分,上课时有点紧张,列表法忘了板书,后来又补上的,在平时的教学中应不断提高调控课堂的能力。

2、在讲授假设法时课件的展示有助学生形象直观的理解,让复杂问题简单化,但却不利于学生抽象思维培养,淡化了数学课的数学味,以后应有选择的使用课件,让课件为教学目标的达成服务。

3、教学时教学语言平淡,缺乏激情,缺少适时的鼓励评价语言,应及时关注学生的状态和课堂的生成,让学生做课堂的主人。在以后教学中我将不断努力学习,从多方面提高自己,争取尽快成长做一名合格的数学教师。

第12篇:鸡兔同笼教学反思

昨晚在家里与峰讨论,明天俞老师上“鸡图同笼”会怎样上呢?因为鸡兔同笼在五年级都已经学了,学生也会解决一些变式的题目,难道他会让学生解一些更难的题目,那么又会怎样来组织材料呢?是不是会解决各种方法之间的联系?....带着很多的猜想走进了今天俞老师的课堂。(很高兴猜中了一点:解决各种方法之间的联系,但是万万没有想到俞老师会用这样的组织方式,从一至六年级学生的解题方法来贯穿整节课),俞老师那幽默风趣的语言、孩子们那精彩的表现赢来了台下听课老师的阵阵掌声。整节课下来,使我体会到了“站在讲台上我就是数学”这句话的真正含义!

一、导入

1、出示一个鸡兔同笼的简单题目(鸡兔头有7个,有脚22只,问鸡兔各有几只?)

t了解学情

2、一、二、三四、五六、七八年级的学生分别怎样来做这个题目。

学生独立尝试

3、s1:二年级用凑数的方法。五六年级用假设的方法。

s2:五六年级还可以用方程解。

4、t:三种方法了,一年级可以用什么方法?

s:用画的方法。

t:用一年级的方法画。(先鸡头再变成兔头)

t:七八年级是怎样解决的呢?

s:1只鸡和1只兔为1组22除以6(用抬脚法)t:归入到三、年级

二、讨论各种方法的异

1、面对这种方法你有什么想法?

t:你认为这四中方法哪种方法最简单?

t:最难的是哪一种?

学生得出数据大的时候,画的方法很难。

为什么一年级会做更难的呢?

s:因为一二年级的做法思路简单。

t:各种方法的主要特征?

s:第一种方法的特征是画出来

s:第二种方法的特征是凑出来

s:第三种方法的特征是算出来

s:第四种方法的特征是解出来

三、分类

1、t:四种方法分成两类,你认为怎样分?

s1:一、二种为一类 三、四为一类

t:还有没有别的分类呢?

(在老师的一只手举起来了,两只手举起来了,三只手举起来了...在耐心的等待中,学生的思维又进入了积极的状态中)

s2:一、四为一种、二三为一种。

小组讨论。画的一类。

s3:一、三为一种,二四为一种。

一、三都是假设的。

二、四都是设鸡为1只,兔为7-1,同方程的解。

t:三种分类,还有吗?

s:一、二三为一种,四为一种,根据有没有*

s:其实怎么分都可以,他们都有共同点。

t:四种方法一样在哪里?

s:都是用假设的'方法。(第五种)

四、优化分类

t:哪一种分类方法最有智慧?

s:一二为一类、三、四为一类,因为一二形象化、三四简单化。

三是一的简单化 二是四的形象化

一是三的形象化 四是二的简单化

t:三四是一二的升级版。

t:如果一个小朋友学不会,你怎么教他?

五、小结

面对这份材料,你有什么想法?

数学有共同点,简单带来复杂,复杂的带来简单。

生:数学是一步一步的演化而来的。

t:我们不学猴子摘了玉米扔玉米,摘了桃子扔桃子...从懵懵懂懂的一年级到六年级,学了不要扔。

第13篇:鸡兔同笼教学反思

在我校本学期组织的公开课教学中,我讲的是人教版的数学《鸡兔同笼》这课。由于我所教的班级学生整体基础较差,课前我对我班的学生进行了估计。一小部分学生接触过鸡兔同笼问题,但对于多数的学生来说,学习《鸡兔同笼》可能会有一定的难度。所以在这节课当中,我决定主要借助教师引导探究这个手段,让学生在尝试,探索,合作中弄懂鸡兔同笼问题的基本解题思路。

师生共同经历了三种不同的方法,列表法,假设法和代数法。让学生认识、理解、运用假设法是本节课的教学重点,也是教学难点。为此,以表格中数据变化规律为探究基础,以小组合作、师生互动为探究方式,以课件动态演示为探究辅助手段,巧妙地将认知经验和思维过程转化成了数学语言,即数学算式,从而形成了解决问题的全新的一般策略,发展了学生的思维水平和推理能力。从学生的学习效果来看,在本节的教学中,学生不容易理解或者说容易出错的就是第三步,实际上也就是对“差”的分析,因此,我和课件结合起来,让学生理解:假设全是鸡,就多出了10只脚,而每增加一只兔子,减少1只鸡,多出的只数就会减少2,10里面有5个2,所以应该有5只兔子,这里一定注意要和学生讲清楚2是什么,要学生不仅仅是看算式,更要看算式前面的文字。结合前面的文字来帮助学生理解算式中的10是什么,2是怎么来的,表示什么意思,这样学生才会对假设法有一个准确的认识。

反思整节课,我感觉基本实现了我预定的教学目标。但是还是存在着很多的不足,例如:

首先,我感觉多媒体课件虽然帮助学生非常直观的理解了“假设法”的这种思维过程,让复杂问题简单化了。但我发现学生的思维过程只是停留在直观、表象这一层面,只有少数同学将这一思考过程内化成成为了自己的一种解决这类知识的模型,大多数同学还是比较喜欢用代数法来解决。

然后,就是在时间的安排上不够合理,导致本节课我并没有完成我预设的内容。在进行教学设计时,我也感觉到本节课的内容着实又点多,虽然问题没几个,但本节课重在方法的渗透,学生必须经历多种方法解决该类问题的一个过程,而这个过程是绝对不能走过场的,必须实实在在的开展探讨活动,这样学生必须有足够的时间,不断调整解题策略,逐步探讨出不同的方法,找到合理解决问题的策略;这样一节课的'时间就显得不够用了,导致最后没有时间来了解日本的龟鹤问题和解决生活中的实际问题。

对于这个问题我也认真的思考了一下解决的办法,因为这是一节公开课,所以要给所有听课教师呈现一节完整的课,那么就要有联系生活实际的练习或者说必须做几道练习题,那么在前面为了节省时间就可以说说解题的思路或者让学生说说列式就可以了,这样就可以解决龟鹤问题,也可以出示生活中的问题让学生用本节课学习的方法解决,这也就体现了数学和生活实际联系很大,让学生觉得学好数学有很大的用处。

第14篇:鸡兔同笼教学反思

鸡兔同笼问题最早出现在我国古代的一本数学著作《孙子算经》中,虽历经1500多年,该类问题还是向我们展现出了其巨大的魅力。二、三年级的奥数中有,五、六年级的教材中有,到了初中还要学,那么该类问题中究竟蕴含着怎样的数学思想,我们在教学中应该怎样构建该类问题模型,教给学生解决该类问题的方法,使学生的数学思维得到相应的发展呢?

带着这样的思考,我不断地查阅资料,寻找我课堂教学的立足点。很幸运的是在查阅资料的过程中我有机会读到了《“鸡兔同笼”问题中的数学思想方法及其渗透策略》这篇文章,其中有这样一段话给了我很大的启发。这段话给我这节课的教学设计起到了很好的理论支撑的作用。这段话中提到“当转化、猜想、列举、画图、假设、建模、代数、抬脚等多种数学思想方法同时作用于“鸡兔同笼”问题中时,它们之间必然存在相互关联之处。转化为猜想、列举、画图等提供了便捷,猜想是列举的开始,列举则是假设的前奏,画图是对列举的结果的形象呈现和为假设提供的直观支撑,假设是对前面诸法的有效提升,建模则是假设的必然结果,代数是假设的联想产物,抬脚无非是假设的另一种特殊形式。”“如果按思想方法的作用给其分类,转化是解决“鸡兔同笼”问题中的基础性的思想方法,不可少之;猜测、列举、画图、抬脚是解决“鸡兔同笼”问题中的颇有局限性的思想方法,虽为假设做好了铺垫或延伸,但会受到数目大小或奇偶性的限制,不能广泛用之;真正能够适应于此类问题的具有普遍意义的一般性方法,无疑还是假设和代数的思想方法。如果按思想方法的新旧给上述思想方法分类,转化、猜想、列举、画图、建模和代数的思想方法,都是在前面教学中教师多次渗透、学生领悟较深的思想方法,惟有假设和抬脚才是本节课中新出现的思想方法,而抬脚不过是特殊的假设,且具有很强的局限性。由此看来,学生真正最需要获得的,又能适应解决问题普遍性要求的一种新的数学思想方法就是假设。”

一、在进行了充分的思考与备课之后,我如期的上了这节课,通过对这节课的实际教学,检查了学生这节课的学习效果之后,我对本节课有了以下几点反思:

1、体现了解决问题策略的多样化与优化

鸡兔同笼问题作为六年级数学广角的内容,那它的思维含量必然很高,由于学生原有认知背景的不同,他们对解答本课时的题目存在较大的差异,所以,在教学的过程中,不能提出统一的要求,要允许不同的学生采用不同的解题方法。本节课,师生共同经历了六种不同的方法:列表法、假设法、列方程、画图法、抬脚法即古人的砍足法,在进行练习时,我先让学生选择自己喜欢的方法进行接的解答,指名生汇报后,进一步问:“还可以怎样解?”促进学生去思考更多的解法,并尽可能多的让学生说出解法,最后比较哪种算法比较好。从列表的枚举法到假设的算术法,不仅从思维上层层递进,而且更好地体现了解决问题策略的多样化与优化。

2、注重了数学思想、数学文化的传承

“鸡兔同笼”是我国民间广为流传的数学趣题,教学中,我从该趣题引入,到解决该趣题,到感悟古人解决该类问题的方法,揭去了它令人生畏的奥数面纱,还其生动有趣的一面。通过学习,不仅使学生感受了祖先的聪明才智,渗透一种古代数学文化,更重要的是体会了其中蕴含的丰富数学思想方法,培养了学生的学习兴趣和能力。如:用容易探究的小数量替代《孙子算经》原题中的大数量的“替换法”解决问题,渗透了转化的思想和方法;用“算术法”解决问题,渗透了假设的思想和方法;用“方程法”解决问题,渗透了代数的思想和方法等等。

3、形成了假设的数学思想

课前,我就感受到了这节课容量大,学生难理解,如果一节课中要求学生理解所有的思想内涵,必将导致课堂内容学习的拥堵和孩子们学习的不知所措。教学中,我并没有平均分配学习时间和关注度,而是结合孩子们认知方式的.,选取了算术解决的假设模型为本课数学思想的重点去渗透,让孩子们在学习解决问题的过程中,在不知不觉的对比中,体会数学思想。正如一些听课老师所说的,学生能够提出用假设法解决鸡兔同笼问题,那这节课的教学目标就已经达到了,因为他已经体验和形成了假设的数学思想。

4、构建了该类问题的数学模型

在学生重点掌握了两种解题思路后,我话锋一转,告诉同学们“鸡兔同笼”问题并不单指“鸡兔同笼”,该类问题在我们的生活中经常遇到,如龟鹤问题、民谣中的人狗问题、租大船小船问题等。明确其在生活中的应用,体现数学的生活味和应用价值。让学生感受到“鸡兔同笼”问题的学习,贵在学习一种假设推理与代数方程的思想方法,贵在用来解决生活中类似于鸡兔同笼的变式问题。拓宽了对“鸡兔同笼”问题的认识,构建了该类问题的数学模型,形成了知识的迁移。

二、还需改进的地方

1、问题情景的创设

生动有趣的数学问题情境,能让学生愉快的探索数学,享受数学带来的乐趣。尤其是在课始时创设学生喜闻乐见的教学情境,能使学生始终处于一种良好的愉悦的氛围中,从而调动学生学习数学的兴趣,发展学生的思维能力。基于这一点,我觉得本节课在课始时如果能创设学生喜闻乐见的教学情境,然后再引入:“类似于这样的问题,我们的祖先早在1500多年前就已经开始研究了。”再课件出示《孙子算经》及鸡兔同笼问题,学生的探究欲望马上就调动起来了,再展开教学,相信会取得更好的效果。

2、进一步加强交流互动,在合作中提高学习效率

根据《新课程标准》在课程设置中强调学生是学习的主人,在学习过程中尽可能多的为学生提供探索和交流的空间,鼓励学生自主探索与合作交流。本节课,在探究解决“鸡兔同笼”问题的方法时,让学生投入到解决问题的实践活动中去,自己去研究、探索、取得了较好的效果,但后面得教学中,没能充分发挥生生互动的作用,如在练习完成后,仅仅是指名汇报一下,如果能让学生同桌再互相说说,小组交流一下会更好。另外,在用假设法解决问题后,应该渗透检验的思想。

第15篇:鸡兔同笼教学反思

鸡兔同笼问题是我国民间广为流传的数学趣题,原先是小学奥数学习的内容之一。现作为数学教材内容《数学广角》,对于我班大多数学生来说有比较大的难度,原因一,它原先是奥数内容,奥数学习学生感觉很难,思想上存在一个怕字。二是班级学生整体基础不扎实,分析问题解决问题能力较弱。三是学生学习习惯不良,缺乏一种积极进取勇于探索的意志。针对上述学生现状,我在教材的处理和目标的制定上,主要是让学生通过学习,了解鸡兔同笼问题,感受古代数学问题的趣味性,激发学生学习数学的兴趣,同时通过多角度地思考,让学生尝试用不同的方法去解决鸡兔同笼问题,体会代数方法的一般性,并且在解决问题中,让学生经历猜测列表假设或方程解的过程,培养学生的逻辑推理能力。

反思本节课,最突出的一个亮点是在解决问题中引导学生思考更具逻辑性和一般性的解法,即假设法和列方程的.解法。教学中,当学生经过猜测,并列表进行验证后,提出:你还有不同的解法吗?在给学生约五分钟思考或同学互助后,再请学生汇报。用假设法解答,采用结合多媒体演示,让学生理解鸡兔同笼问题的解题思路,特别指出的是让学生弄清假设全部是鸡或兔时,实际总脚数与假设情况下的总脚数之差表示什么,进而推导出鸡、兔的只数。列方程解鸡兔同笼问题,由于数量关系非常明确,思路更清晰,便于学生理解,这种方法更具有一般性,教学中重点让学生明确设一个量为X,另一个量是总头数减X,然后根据只数与脚数之间的关系式列出方程并求出方程的解。

但本节课还存在较多不足。首先是教学时间调控欠合理。由于教学内容的限制,课堂上让学生经历猜测、列表、假设或方程解的过程,尝试用不同方法解决问题,最后找到合理解决问题的策略,这样一节课的时间就显得不够用了,导致最后没有时间来解决生活中的实际问题。所以就只好把这个问题作为一个课后延伸,让学生收集生活中的类似鸡兔同笼问题,待到下一节课再研究。其次课堂预设对学生估计不足。用假设法解决问题时,实际脚数与假设情况下总脚数之差的交流讨论,用时过多,影响后面的进程,导致与生活中类似的鸡兔同笼问题草草过场。第三,多媒体课件的使用,虽然帮助了学生非常直观地理解了假设法的这种思维过程,让复杂问题简单化了,但我发现学生的思维过程只是停留在直观、表象这一层面,只有少数同学将这一思考过程内化成了自己的一种解决这类知识的模型,多数学生并没有完全理解或理解得比较模糊。

更多相关内容: