《圆锥的体积》教学反思

句文网    发表于:2023-02-27 17:20:07

第1篇:《圆锥的体积》教学反思

圆锥的体积这一部分内容是圆柱体积的迁移。在这节的设计上我主要是采用让学生自主探究----动手实践-----得出结论的模式进行教学的。在操作的过程中,我充分的利用学具,先让学生观察手中的圆柱与圆锥有什么关系,学生观察到他们是等底等高的,我的目的就是为了深化学生对这一个条件的认识。紧接着学生开始尝试用学具研究圆柱与圆锥体积的关系。当他们一切进行的都很顺利的时候,有一个小组突然提出用“圆柱向圆锥里倒水也是可以的。”话音刚落,另一个小组的学生马上说道:“那样很麻烦的,还得测量出圆柱的体积,计算出来。”显然圆柱与圆锥之间的体积公式的推导过程已经牢牢的印在脑海中,这就已经达到了我所需要的效果了。

记得有位老师曾经说过:老师说了,学生记住了,没有多久就忘了,只有动手操作了,学生记住了,形象的记忆就会产生了。让我们多创造一些动手的机会给他们吧!

第2篇:《圆锥的体积》教学反思

六年级的学生对立体图形已经有了初步的认识,因此,在教学中,我借助圆锥体和圆柱体的联系和区别,引出圆锥体的特征,进而分散了难点。在讲授体积公式时,我设计的实验环节,把学习的主动权交给了学生,学生就可以既动手又动脑,通过自己的努力总结出圆锥体的体积公式,在学习中体会到成功的喜悦。

建构主义认为,学生的学习不是由教师向学生的单向知识传递,而是学生建构自己知识的过程。学生不是被动的信息接受者,而是一个主动探究、发现知识的研究者。基于以上的认识,我很注重让学生自主学习,通过动手制作圆锥体,培养学生的空间概念,自主探究圆锥体的计算方法,提高解决问题的能力。

这节课为学生提供了具体的实践活动,创设了引导学生探索、操作和思考的情境,把教师变成“一位顾问”,“一位交换意见的参与者”,“一位帮助发现矛盾论点、而不是拿出现成真理的人”。这节课把学生推到探究新知的“第一线”,让他们自己动手、动口、动脑,主动思考问题,并在探究新知的过程中,暴露感知的矛盾和差异,把他们弄不懂的地方、错误的地方都摆在桌面上,再引导他们通过独立思考,摒弃错误,发现真理,实现由感性认识到理性认识的转化。这样,通过活动,让学生自己发现要学习的东西,能够积极地被同化,因而容易得到更深刻的理解。整节课大部分时间都是学生在操作,有独立的思考,有小组的合作学习,有猜想,有验证,有观察,有分析,有想像,使学生在尽可能大的活动空间中切实体验到数学对解决实际问题是有用的,让学生在探究的氛围中自主地学习知识,发现规律,实际应用,从而获得成功的体验。

第3篇:《圆锥的体积》教学反思

以前教学圆锥的体积时,由于教具的制作非常麻烦,多是先由教师演示等底等高情况下的圆柱体积的三分之一正好是圆锥的体积,再让学生验证,最后教师通过对比实验说明不等底等高的差异,但收到的效果不佳,计算圆锥的体积时容易忘掉乘。学生对等底等高这一重要条件掌握并不牢固,理解很模糊。在本次课中,新课一开始,我就让学生观察,根据学习体积的经验,先判断四个圆锥的体积大小,引导学生猜测圆锥的体积和它的什么有关,学生联系到了圆柱的体积,都能说出圆锥的体积跟它的底面积和高有关系,在猜想中激发学生的学习兴趣,使学生明白学习目标。

为了让学生理解等底等高是判断圆锥的体积是圆柱体积的三分之一的前提条件,同时为了节约教学时间,我设计了这样的教学片断:让学生思考,圆锥与学过哪个立体图形的关系最近?为什么?学生很容易找到圆柱,接着我又拿出几个不同的圆柱,问:考考你们的眼力,选择哪个来研究这个圆锥的体积比较好?将学生选的圆柱进行验证,发现与圆锥是等底等高,告诉学生在选择实验材料时要尽量选择有些相同条件的,这样实验时可以少走弯路,实验的结果准确些,在这个过程中加深了对等底等高这个条件的理解。这时,让学生进行小组合做,实验探究,经历一番观察、发现、合作、创新的过程,得出圆锥体积等于和它等底等高圆柱体积的三分之一。这样让学生置身于有目的的实践中,增加对实验条件的选择及信息的归纳。既圆满地推导出了圆锥的体积公式,又促进了学生实践能力和批判意识的发展。而这些目标的实现,完全是优化实验过程所产生的效果。

在小组合作学习中,为了增强实效性,避免走形式,在课前,我引导学生制作等底等高的一组圆柱和圆锥,使每个学生都能真切的参与实验、参与到探究中去,让他们以这样每个学生都能怀着喜悦的心情进行学习,最大限度的发挥每个学生的自主学习的能力,这样的学习不仅使学生学会了知识,更重要的是培养了学生的能力。

通过本节课的教学,我意识到在平时的课堂教学中,我们要善于利以学生认识发展规律为依托:发现问题,提出问题探究解决问题,探究解决问题得出结论,实际应用使学生在认识实践再认识、再实践中理解运用知识。在教学环节中以学生探究为基础引导学生在探究中总结规律,并运用规律解决实际问题,激发学生探究的兴趣感受到数学的应用性,解决问题的乐趣,逐步提高学生探究知识应用知识解决实际问题的能力。

本节课的教学中比较遗憾的时,在制作课件时考虑不周全,几个圆锥的相关数据不准确,比例不合适,对学生的学习造成了不必要的麻烦,影响了学生的判断结果,这些看似细节的环节,却反映了在备课时的粗心大意,对学生也会产生不良的影响,今后要注意,时刻记住:细节决定成功!

第4篇:《圆锥的体积》教学反思

课前我安排学生收集、整理生活中应用圆锥的实例和信息资料。教学时我首先列举生活中大量的圆锥实物,在学生观察思考这些物体形状的共同特点,并从实物中抽象出几何形体的基础上引入。再引导学生对照模型和图形,互说圆锥的特征,加深对圆锥的认识。感受几何知识在生活中的应用,同时提高学生运用数学为生活服务的意识和能力。

在本课中,我无论从问题的引入,圆锥概念的定义,高的寻找及测量方法的探索,我都给予学生充足的时间进行尝试、研究和讨论,让学生以不同的方式进行合作、交流,这样的过程,不仅提供了学生自主学习的机会,也提高了学生自主参与学习的意识和信心,大家积极发言,争先操作,参与率很高。

我积极地创造机会让学生自己去学习或者去探究问题。通过看一看,摸一摸,比一比,指一指,说一说,猜一猜等问题情境,让学生亲身感受数学,在找中学,在测中学,在思中学,培养学生动手操作能力、直观思维和抽象思维能力,使数学课堂教学,动起来,活起来,让学生在做中学,使数学课堂焕发出生命活力。

第5篇:《圆锥的体积》教学反思

通过本节课的教学,我意识到在平时的课堂教学中,我们要善于利用以学生认识发展规律为依托:发现问题,提出问题探究解决问题,探究解决问题得出结论,实际应用使学生在“认识—实践—再认识、再实践”中理解运用知识。反思教学过程,主要有以下几点体会:

一、观察引导

让学生观察用卷笔刀削铅笔,明白刚才那一截是圆柱体,现在这一截变成了圆锥体。启发学生:削成后的这一部分体积与原体积比较有无变化?学生回答是肯定的,削后体积变小了。变小了以后的圆锥体是原圆柱体的几分之几?也就是说圆锥体体积与圆柱体体积有什么联系?圆锥体体积公式如何推导?带着问题去看书。

二、巧置陷阱

学生看书后知道圆锥体体积等于等底等高圆柱体积的三分之一。但对“等底、等高”这个条件往往不注意。为了突出“等底、等高”这个条件的重要性,我巧置陷阱,让学生分组操作,(有一组的圆柱和圆锥体的容器不是等底等高的,有一组的圆柱和圆锥体的容器是等底等高的),去验证课本上的知识。学生进行倒水实验:用圆锥体容器盛满水倒入圆柱体容器。过了一会儿,一个小组倒了3次水,还没灌满;而另一小组的同学却大叫:“水溢出来了!”这是什么缘故呢?学生们议论纷纷。

三、柳暗花明

这时正是学生思维活动进入高潮时,我拿出等底等高的圆柱体和圆锥体两个容器,用圆锥体量水三次正好灌满圆柱体,引导学生与上次演示比较,1比3的关系是在什么基础上建立的?学生恍然大悟,明白圆锥体和圆柱体等底、等高,圆锥体体积才是圆柱体体积的三分之一。而在这样的过程中我放手让学生去想、去做,鼓励学生以多角度去思考问题。学生在学习的过程中,始终是一个探索者、研究者、发现者,并获得了富有成效的学习体验。

四、归纳总结

刚才同学们发现圆锥体体积等于等底、等高圆柱体体积的,现在圆锥体体积公式如何推导?学生很容易得出:

v圆锥体=sh÷3

但在教学过程中我发现了几个值得我思考和改正的问题:

1、在教学之后感觉到遗憾的是,由于教具有限,参与实验的学生不多。

2、有些学生在计算过程中常忘记除以3,需要加强练习。

3、对学生的操作关注不够到位。

采取的措施:

1、培养学生养成良好的学习习惯,做题时认真仔细。

2、上课要用心去感受学生课堂上出现的各种情况,使自己更有激情,把自己更好地融入到课堂教学中去。同时也会把时间更多的放在钻研教材上,把每一节课上得有声有色。

《圆锥的体积》教学反思

《数学课程标准》指出:“有效的数学学习活动不能单纯地依赖模仿和记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。”因此,在教学圆锥体积计算时,一改以前教师演示或在教师指令下实验的做法;采取提供学生材料和机会,引导学生自主探究的学习方式。具体表现在:

(1)密切数学与现实的联系,富有儿童情趣。

学生从熟悉的经典历史故事《曹操称象》中,理解了“大象”转化为“石头”的等量代换的数学方法,渗透转化的方法,为新知识作好铺垫和准备。又从刨铅笔直观引入,引发学生大胆猜想,学生的主动性,探究性得到培养。实验中的米;最后,习题中又回归生活,延伸了课堂。

(2)致力于改变学生的学习方式。

在教学过程中,能够在学生已有的知识经验基础和动手操作上,经过学生自主探索与合作交流,解决了与生活经验密切联系,具有挑战性的问题。课堂中,启发学生提问,猜想,动手测量,注重了解决问题能力的培养,体验到了成功的快乐。

(3)学习过程中揭示了一般科学的研究方法。

提出问题——直觉猜想——实验探索——合作交流——实验验证——得出结论——实践运用。这为以后的探究学习提供了一个基本方法,使学生在自主探索中掌握了知识,同时获得了最广泛的数学活动经验、理想和方法,更发展了学生的反思意识、小组自我评价意识。

纵观本节课的设计,运用现代教学理论,以新课程的理念指导教学,较好的处理了主导和主体、知识和能力、过程和结论的关系,充分调动了学生的积极性,引导全体学生动脑、动手、动口参与学习的全过程。整节课教学目标明确,教学层次清楚。结构严谨,重点突出,取得了良好的教学效果。

第6篇:《圆锥的体积》教学反思

在本节课中,通过用排水法测量外形类似于圆锥的体积(比如铅锤)不但麻烦,而且有时还不能用(比如测量麦堆的体积),体会此方法具有一定的局限性而引入新课。从面上的相似性知道圆锥的体积可能与圆柱的有关,然后经历大胆猜测、实验验证、分析实验结果,从而得出体积公式的过程。再利用适当的练习巩固公式而达到本节课的教学目的。本节课总体感觉很顺畅,学生思维活跃。在课堂上利用实物演示,较好地引导学生思考,总结出等底等高的圆柱与圆锥之间的关系,突出了重点,突破了难点。

《数学课程标准》明确指出,要让学生能够“初步学会运用数学的思维方式去观察、分析现实社会,去解决日常生活中和其他学科学习中的问题,增强应用数学的意识。”本课的设计充分体现了这一理念。课中让学生动手分别用圆锥和圆柱盛沙,让学生感受到数学与生活的密切联系,通过自己的探究,运用数学的思维方式解决问题,又能运用掌握的知识去研究解决生活的其它数学问题,,培养了学生的应用意识。同时,课堂教学注重让学生自主学习,合作探究,充分发挥了学生的学习主动性,也培养了学生的创新能力。

虽然本节课达到了教学目的,取得了不错的教学效果,但也存在一些不足,由于受条件限制,学具准备不够充分;课堂语言还不够简练;在学生汇报时,没有抓住生成;没有认真研究不等底不等高的体积关系等。在以后的教学过程中一定会注意这些问题,使自己不断地进步。

第7篇:《圆锥的体积》教学反思

圆锥的体积是在学生直观认识圆锥的特征,会算圆的面积,以及长方体、正方体、圆柱体的体积的基础上安排教学的。以往几次,都是按老方法进行,一开始教师就准备了一个圆柱和一个圆锥,先比较它们的底面积相等,再分别量出它们的高也相等。进而由老师做实验,把圆锥装满水(或沙)往圆柱里倒,学生观察倒了几次正好把圆柱装满。接着推导圆锥的体积等于圆柱体积的三分之一,并重点强调求圆锥的体积一定要乘三分之一。一节课上下来非常轻松,非常顺利,时间也充足,作业效果也还不错。可是到了综合运用问题就出来了:忘记乘三分之一的,计算出错的,已知圆锥的体积和底面积,求高时,直接用体积除以底面积的,出的错误五花八门。

再上这节课时,我加强了以下几个点的教学,收到了较好的效果。

1、教学新课时,我出示一个圆柱体和一个圆锥体让学生观察并猜测圆锥的体积和什么有关,学生联系到了圆柱的体积,通过师生交流、问答、猜想等形式,调动学生的积极性,激发学生强烈的探究欲望,学生迫切希望通过实验来证实自己的猜想,所以做起实验就兴趣盎然;

2、实验时,让学生小组合作亲自动手实验,以实验要求为主线,即动手操作,又动脑思考,努力探索圆锥体积的计算方法。学生在学习的过程中,始终是一个探索者、研究者、发现者,并获得了富有成效的学习体验。学生获得的不仅是新活的数学知识,同时也获得了探究学习的科学方法,探究成功的喜悦以及探究失败的深刻反思,在这样的学习中,学生会逐步变的有思想、会思考、会逐渐发现自身的价值。

3、学生做图形应用题时,引导学生审题,先确定是什么图形,再想相应的计算公式,最后根据公式列出算式。这样对于后面的综合运用题,学生有了这种固定思维模式,就不会乱列式,

4、列出算式后,不要按部就班的从左算到右,先观察算式的特点,寻求简单的计算方法,把口算和计算有机结合。如:3.14×(4÷2)2×8时,先口算(4÷2)2=4,再口算4×8=32,最后再计算3.14×32。又如:×3.14×(4÷2)2×9时,先口算×9=3,(4÷2)2=4,3×4=12,再计算3.14×12。这样就大大地减少了学生计算难度,提高了计算的正确率。

第8篇:《圆锥的体积》教学反思

圆锥的体积是在学生掌握了圆柱的特征及圆柱的体积等有关知识的基础上进行教学的。

成功之处:

1.让学生经历圆锥体积计算公式的推导过程,弄清来龙去脉。在教学中,我首先通过给学生提供两组不同的学具:一组是等底等高的圆柱和圆锥,另一组是等底不等高的圆柱和圆锥。让学生通过倒水,发现在等底等高的圆柱和圆锥中,用圆锥容器装水倒入等底等高的圆柱容器中,刚好倒三次,即圆锥的体积是与它等底等高圆柱体积的三分之一,而在等底不等高的圆柱和圆锥中,则不存在这样的关系,圆锥的体积就不是与它等底不等高圆柱体积的三分之一,由此通过公式可以得出:V圆锥=1/3圆柱

=1/3Sh(知道底面积和高)

=1/3πr2h(知道半径和高)

=1/3π(d*2)2h(知道直径和高)

=1/3π(c*2*π)2h(知道周长和高)

2.加强学生的实践,培养学生的动手操作能力与自主解决问题的能力。在教学中,我提供的是两组不同的学具,目的是让学生通过自己的亲身实践,亲自动手,亲身体会圆柱与圆锥体积之间的关系,这样利于培养学生自主探索,与同学之间合作学习,共同解决问题的能力。学生在此项活动中,不仅收获了知识的来龙去脉,还体会到了与同学合作,共享成果的幸福喜悦。

不足之处:

由于课前把制作的U盘带回家,未带回来,所以导致课上无法通过多媒体课件的形式,把动手操作的完整过程给学生进行展示。

再教设计:

上课前的一点一丝疏漏都要力求避免,课前准备真的是对于教师来说至关重要,缺少哪一环都会在课堂上留下遗憾。

第9篇:《圆锥的体积》教学反思

《圆锥的体积》是在掌握了圆锥的认识和圆柱的体积的基础上教学的。教学时让学生通过实验来发现圆锥与等底等高的圆柱之间的关系,从而得出圆锥的体积等于和它等底等高的圆柱体积的三分之一,并能运用这个关系计算圆锥的体积,让学生从感性认识上升到理性认识。学生感到非常简单易懂,因此学起来并不感到困难。

新课一开始,我就让学生观察,先猜测圆锥的体积和什么有关,学生联系到了圆柱的体积,在猜想中激发学生的学习兴趣,使学生明白学习目标。教师从展示实物图形到空间图形,采用对比的方法,加深学生对形体的认识。然后让学生动手实验,以小组合作学习的方式让每个学生都能参与到探究中去,学生在实验中得出结论:等底等高的圆锥体体积是圆柱体体积的三分之一,从而推出圆锥的体积公式。这样,就有一种水到渠成的感觉。对圆锥的体积建立了鲜明的印象之后,就应用公式解决实际的生活问题,起到巩固深化知识点的作用。

由于本节课活动单设计合理,问题比较精细,学生能在小组合作学习的过程中,自主设计实验过程,从而选择合适的学具来做实验,在比较、分析中得出圆锥的体积公式,取得了较好的效果。具体分析如下:

一、收获:

1、探究圆锥体积计算方法的学习过程,学生不再是实验演示的被动的观看者,而是参与操作的主动探索者,真正成为学习的主人。在整个学习过程中,学生获得的不仅是新活的数学知识,同时也获得了更多的是探究学习的科学方法,探究成功的喜悦以及探究失败的深刻反思,在这样的学习中,学生会逐步变的有思想、会思考、会逐渐发现自身的价值。

2、每个学生都经历“猜想估计---设计实验验证---发现算法”的自主探究学习的过程,在教学案的引导下学生能在小组合作学习的过程中,自主设计实验过程,从而选择合适的学具来做实验,在比较、分析中得出只有等底等高的圆柱和圆锥才有这样的关系,从而加深了等低等高的印象,进而得出圆锥的体积公式,让每个学生都经历一次探究学习的过程。

3、学生在展示中获得了成功的喜悦,体验了探究的乐趣。

自采用“活动单导学”教学模式以来,学生敢说、愿说、乐说,学生的语言能力及叙述问题的条理性、层次性有了明显的提高。在本节课中学生能够根据教学案中的问题进行思考、讨论,从而大胆展示,能够把动手实践和语言表达结合在一起,从而清楚地展示了圆锥的体积探究的全过程。这点值得充分的肯定。

二、不足:

1、。实验教材具有现成性,学习用具具有一定的`实际限制,使学生探索思考的空间较小,不利于学生思维的充分发展。

2、学生在实验时要求不高,导致存在着误差。实验失败。

3、学习困难的学生对于一些需要灵活判断的题目还是不能有较好的把握,从而也可以看出,他们对于该体积公式的理解也只是停留在了较简单的和较低的层面。在与圆柱的体积的联系中,思维的灵活度不够。后来也感觉他们有出现一点点厌学的情绪,这是因为在最后他们把自己当成了倾听者。缺少了一种主动思维和思考的愿望。

三、措施:

1、让学生养成良好的学习习惯,做题时认真仔细。

2、鼓励学生利用课余时间间动手做一些学具,不仅会增强学生的动手操作能力,而且可以用到学习中去。

3、教师要认真的去设计教学案,把每一个问题设计精细,小组合作学习才能真正发挥优势。

第10篇:《圆锥的体积》教学反思

教学圆锥的体积是在掌握了圆锥的认识和圆柱的体积的基础上教学的。本课教学摒弃了以往把学生分成若干组,小组实验得出结论的方法。

新课一开始,我就让学生观察,先猜测圆锥的体积和什么有关,学生联系到了圆柱的体积,在猜想中激发学生的学习兴趣,使学生明白学习目标。然后让学生看白板演示将圆锥里的水倒入等底等高的圆柱里,需要倒几次。虽然孩子们没有进行实验,但孩子目睹了过程,从中得出结论:等底等高的圆锥体体积是圆柱体体积的三分之一,从而推出圆锥的体积公式。对圆锥的体积建立了鲜明的印象之后,就应用公式解决实际的生活问题,巩固深化知识点。

思考:虽然学生在学习的过程中,应该成为一个探索者、研究者、发现者,但不是并不是每个知识的获得都必须学生动手操作。从课后的作业反馈来看,学生的出错率比以前小组合作的学习的还要好。看来,这样的学习,学生学的活,记得牢,即发挥教师的主导作用,又体现了学生的主体地位。

第11篇:《圆锥的体积》教学反思

上完《圆锥的体积》这节课,我反思了整堂课的教学,总的来说,上下来还是可以,通过学生大胆猜测圆锥的体积可能和什么形状的物体有关引入科学验证,然学生在两次倒水的过程中发现等底等高的圆柱与圆锥体积间的关系,由此引出圆锥的的体积公式V=Sh÷3,在整个教学过程中,我非常注重让学生参与教学的全过程,毕竟学生始终是活动的主体。同时引导学生用科学的态度去对待这个实验,验证自己的猜想,整个过程注重实事求是,认真分析自己的实验结论,培养了学生科学的实验观。教学中“圆锥的体积是圆柱的1/3,它们一定等底等高”这个环节我没有预先设计的,它是课堂中随机生成的,却让学生增加了知识,通过学生的举例子,学生能发现当当圆柱和圆锥的底面积和高交叉相等时,圆锥的体积也是圆柱体的三分之一,因此这句话是错的。总而言之,这节课每个学生都经历了“猜想---实验---发现”的环节,不仅让学生获取了新知,也让学生体会到探索成功的乐趣。

但课后反应的的作业情况来看,学生基本理解了圆锥的体积,但在计算时却经常忘记除以3。一些学习困难的学生对于稍微需要灵活判断的题目还是不能有较好地把握,从而也可以看出,他们对于该体积公式的理解也只是停留在了较简单的和较低的层面,知识死记公式,不能灵活应用。

第12篇:《圆锥的体积》教学反思

圆锥的体积是在学生掌握了圆锥的认识和圆柱的体积的基础上教学的。教学时让学生通过实验来发现圆锥与等底等高的圆柱之间的关系,从而得出圆锥的体积等于和它等底等高的圆柱体积的三分之一,并能运用这个关系计算圆锥的体积,让学生从感性认识上升到理性认识。学生感到非常简单易懂,因此学起来并不感到困难。但教学过后,仍感到有许多不尽人意之处,当然,也有许多收获。

新课一开始,我就让学生观察,先猜测圆锥的体积和什么有关,学生联系到了圆柱的体积,在猜想中激发学生的学习兴趣,使学生明白学习目标。教师从展示实物图形到空间图形,采用对比的方法,不断加深学生对形体的认识。然后让学生动手实验,让孩子亲历教学的验证过程,从实验中得出结论:等底等高的圆锥体体积是圆柱体体积的三分之一,从而推出圆锥的体积公式。这样,就有一种水到渠成的感觉。对圆锥的体积建立了鲜明的印象之后,就应用公式解决实际的生活问题,起到巩固深化知识点的作用。

在教学之后感觉到遗憾的是,由于教具有限,参与实验的学生不多,如果每个小组准备一套学具,让他们以小组合作学习的方式使每个学生都能真切的参与到探究中去,这样每个学生都能怀着喜悦的心情进行学习,最大限度的发挥每个学生的自主学习的能力,这样的学习不仅使学生学会了知识,更重要的是培养了学生的能力。

一、收获:

1、探究圆锥体积计算方法的学习过程,学生可以不再是实验演示的被动的观看者,而是参与操作的主动探索者,真正成为学习的主人。在整个学习过程中,学生获得的不仅是新活的数学知识,同时也获得了更多的是探究学习的科学方法,探究成功的喜悦以及探究失败的深刻反思,在这样的学习中,学生会逐步变的有思想、会思考、会逐渐发现自身的价值。

2、每个学生都经历“猜想估计---设计实验验证---发现算法”的自主探究学习的过程,在教师适当的引导下给于学生根据自己的设想自由探究等底等高的圆锥体和圆柱体体积之间的关系,圆锥体体积的计算方法。让每个学生都经历一次探究学习的过程。

(1)、一节好的课,在教学时要层次清楚,步步深入,重点突出。

在教学“圆锥的体积”时,我首先用实物图形到空间图形,采用对比的方法,不断加深学生对形体的认识。然后要学生用自己的学具动手做实验,从实验的过程中得出结论:等底等高的圆锥体体积是圆柱体体积的三分之一,从而推出圆锥的体积公式。这样,就有一种水到渠成的感觉。然后,利用公式解决生活中的实际问题,加深学生印象。

(2)、一节好的课,应注意激发学生的求知欲。

新课一开始,我就让学生观察,先猜测圆柱和圆锥的大小,激发学生的学习兴趣,使学生明白学习目标。在应用公式的教学中,又把问题转向到课初学生猜测且还没有解决的问题,引导学生计算出圆锥的体积,终于使悬念得出了满意的结果,使学生获得了成功的喜悦。

(3)、一节好的课,要有全体学生的积极参与,突出学生的主体作用。

由于我平时非常重视让学生参与教学的全过程,重视培养学生的思维想象力,因此,学生在这节课上,表现也相当的出色。我在教学中注意调动学生的学习积极性,采用分组观察、操作、讨论,动手做实验等方法,突出了学生的主体作用。

二、不足:

1、许多学生在计算过程中常忘记除以3,需要加强训练。

2、实验教材数量有限,只能起到演示作用,学生成为被动的观看者,不能实现人人参与操作探究。

(1)。这些实验设计在教学实践中也暴露出许多不足:这些实验设计都需要借助一定的中介,而根据小学生的认知特点,他们在比较体积关系时首先想到的是进行体积的直接对比,所以实验设计不符合学生思维的真实水平。

(2)。实验教材具有现成性,学习用具具有一定的实际限制,使学生探索思考的空间较小,不利于学生思维的充分发展。

第13篇:《圆锥的体积》教学反思

(1)

让学生真正成为活动的主动者,才能让学生真正的感受自己是学习的主人。在图形的教学中,根据学习内容的特点,注重操作,注重实践,可以让教学达到最高效。

就正如探究圆锥体积计算方法的学习过程,学生可以不再是实验演示的被动的观看者,而是参与操作的主动探索者,真正成为学习的主人。在整个学习过程中,学生获得的不仅是新活的数学知识,同时也获得了更多的是探究学习的科学方法,探究成功的喜悦以及探究失败的深刻反思,在这样的学习中,学生会逐步变的有思想、会思考、会逐渐发现自身的价值。同时,在操作与实践的过程中让一些学习困难的学生也有参与的兴趣,让他们也能感受数学学习的快乐,使他们懂得他们也可以通过玩掌握到数学的知识。

让每个学生都经历“猜想估计---设计实验验证---发现算法”的自主探究学习的过程,在教师适当的引导下给于学生根据自己的设想自由探究等底等高的圆锥体和圆柱体体积之间的关系,圆锥体体积的计算方法。让每个学生都经历一次探究学习的过程。同时对于学习困难的学生该学习方法也是降低了他们对知识的掌握的难度。

出现了验证等底等高的圆锥体和圆柱体体积的方法。涌现出了对圆锥体体积计算公式中“1/3”的不同理解,实现了学习策略的多样化,丰富了学生的学习资源。虽然学生的学习用具是固定的,但是他们所采用的方式却是不一样的。这也证明了学生是有着各自不同的思维方式的。

(2)

《圆锥》这节课,其教学目标是:1)、认识圆锥,了解圆锥的底面、侧面和高;2)、掌握圆锥高的测量方法;3)、圆锥体积公式的推导;4)、通过例一例二使学生会应用圆锥公式进行简单的计算。教学中,学生通过实际触摸,动手测量、探索推导等活动,前三个教学目标在轻松快乐的氛围中顺利完成。在公式V锥=1/3sh=1/3r2h,应用这个环节,考虑到学生已经预习过例题,就把例二教学做了改动给出一圆锥形麦堆,底面直径是20分米,高是14分米,每立方米小麦重0.375千克,求这堆小麦重多少千克?让学生自主练习,本以为应用公式很快就能解决的一个问题,可学生算了好长时间还没有完成。原来我在改动数字时没有考虑到圆锥体积公式的1/3和3.14给出的直径和高与1/3都不能约分,使本应该巩固公式应用的目标辩词了复杂的小数计算,浪费了大量的时间,课后习题没有处理完就匆匆结束了这节课。课后反思数学既活又严谨,看似一个简单数字的出示也要付出周密的策划。一节简单流畅的好课,并不是随手拈来的,只要用心的去思考,统筹安排,关注到每个细节才能得到。

教学需要学习,教学更需要反思,在反思中进步,在反思中提高。

(3)

一节课下来,我静心思考,有以下几点反思:

1、一节好的课,在教学时要层次清楚,步步深入,重点突出。

在教学“圆锥的体积”时,我首先从实物图形讲解到空间图形,采用对比的方法,不断加深学生对形体的认识。然后要学生用自己的学具动手做实验,从实验的过程中得出结论:等底等高的圆锥体体积是圆柱体体积的三分之一,从而推出圆锥的体积公式。这样,就有一种水到渠成的感觉。然后,利用公式解决生活中的实际问题,加深学生印象。

2、一节好的课,应注意激发学生的求知欲。

新课一开始,我就让学生观察,先猜测圆柱和圆锥的大小,激发学生的学习兴趣,使学生明白学习目标。在应用公式的教学中,又把问题转向到课初学生猜测且还没有解决的问题,引导学生计算出圆锥的体积,终于使悬念得出了满意的结果,使学生获得了成功的喜悦。

3、一节好的课,要有全体学生的积极参与,突出学生的主体作用。

由于我平时非常重视让学生参与教学的全过程,重视培养学生的思维想象力,因此,学生在这节课上,表现也相当的出色。我在教学中注意调动学生的学习积极性,采用分组观察、操作、讨论,动手做实验等方法,突出了学生的主体作用。

第14篇:《圆锥的体积》教学反思

圆锥的体积是学生在掌握了圆锥的认识和圆柱的体积的基础上教学的。是小学几何初步知识教学的重要内容。本节教学分两个层次进行,一是推导圆锥体积计算公式,二是运用公式求圆锥的体积。在教学时,主要运用了探究式的教学方法进行教学,收到了较好的效果,现总结以下几点做法:

一、大胆猜测,培养猜测意识。

假设和猜想是科学的天梯,是科学探究的重要一环。任何发明创造都是离不开假设和猜想的。基于这样的认识,结合本节课教学内容的特点,在教学中借助教具和学具,让学生充分观察“等底等高的圆柱和圆锥”后,再大胆猜想它们的体积可能会有什么样的关系?”这样设计,事实证明不仅仅是能够培养学生的猜测意识,更重要的是充分调动了所有学生的积极性,大家探究的欲望强烈,为本节课的成功教学奠定了基础。

二、操作验证,培养科学的实验观。

数学不仅是思维科学,也是实验科学,通过观察猜想,实验操作得到数学结论,这种形式也是进行科学研究的最基本形式.教学中,使学生通过自主探究实验得出结论:圆锥的体积是与这个圆锥等底等高的圆柱体积的三分之一。从而总结出圆锥体积的计算公式:V=1/3Sh。

教学圆锥的体积计算时先分组做实验,在空圆锥里装满沙子,然后倒入空等底等高的圆柱中,从倒的次数中观察到怎样的现象呢?两者体积之间有怎样的关系。我们将空圆锥里装满沙子,然后倒入空圆柱中,三次正好装满。说明圆锥的体积是圆柱的三分之一。然后用不等底等高的圆锥和圆柱所得的情况与以上不同。最后得到一个原理等底等高。圆锥的体积等于和它等底等高的圆柱体积的三分。

《圆锥的体积》的教学都是先由教师演示等底等高情况下的三分之一,再让学生去验证,最后教师通过对比实验说明不等底等高的差异,而在以上教育中却不然,先采用学生做实验的方法,让学生亲自实践,在实际中懂得其中的道理,用一个等底等高圆柱和圆锥,让学生分组进行实际操作,使学生清楚的知道其中的知识点,明白了圆锥与圆柱之间的体积关系,从而是学生发现其中的数学原理,而且有意地将实验的环节复合,在看似混乱无序的实践中,增加了学生对实验条件的辨别及信息的批判,同时这也是这堂课需要解决的重点和难点。在整个教学过程中,重视让学生参与教学的全过程,学生始终是活动的主体,我则是这一活动的组织者、指导者、和参与者。同时引导学生用科学的态度去对待这个实验,实事求是,认真分析自己操作实验出现了和别人不太一样的结论的原因,培养学生科学实验观。学生学的主动,经历了一番观察、发现、合作、探究的过程,既能达到圆满地推导出了圆锥的体积公式,又使学生的实践能力得到发挥。

总之,这节课,每个学生都经历了“猜想———实验———发现”的自主探究学习的过程。学生获得的不仅是鲜活的数学知识,获得更多的是科学探究的学习方法和研究问题的方法,孩子们体验到了探究成功的喜悦,进行了探究失败的深刻反思,有利于从小树立科学的实验观。思考:如果长期在这样的探究中去学习知识,学生就会变成有思想、会思考、会研究、会学习的人。

第15篇:《圆锥的体积》教学反思

【教材解读】

《圆锥的体积》这部分知识是小学阶段学习几何知识的最后一部分内容,也是人们在生产生活中经常遇到的几何形体,教学这部分内容,有利于进一步发展学生的空间观念,为进一步学习和解决实际问题打下基础,我认为《圆锥的体积》这部分内容在本单元中占有十分重要的地位。

【学情分析】

高年级学生分析问题,解决问题能力逐步增强,这为学生的自主探究及合作学习创造了有利条件,他们已掌握了一些几何知识,了解部分几何图形之间的转化方法。但学生的立体空间观念还不是完全成熟,形体之间的转化还有一定的困难。针对学生的实际,教学中我主要采用观察法,猜想、操作等方法,组织学生探索规律,归纳总结,体验知识的生成和形成。

【教学目标】

1.通过学生动手操作实验发现等底等高的圆锥体积之间的关系,从而得出圆锥体积的计算公式,并能运用所学知识解决实际问题。

2.培养学生的动手操作能力和探究意识,发展学生的空间观念。

3.通过生活中的故事,培养学生良好的思想品德。

【重点难点】

1.圆锥的体积公式的推导过程

2.进一步理解圆锥的体积公式,能运用公式进行计算,能解决简单的实际问题。

【教学策略】

1.加强实践操作:

《数学课程标准》中要求“在教学中,应注重使学生探索现实世界中有关空间与图形的问题;应注重使学生通过观察、操作、推理等手段,逐步认识简单几何体和平面图形的形状、大小、位置关系及变换”。所以,在教学中,设计了多次实验环节,让学生自己动手,亲身经历圆锥体积公式的推导过程,让学生的多种感官参与学习活动,在理解知识的基础上,发展学生思维。

2.整合课程资源,创造性地使用教材;

数学课程要关注学生的生活经验,在引入新知时,我创设了一个贴近生活的情境,使枯燥的数学问题变为活生生的生活现实,让学生的课堂气氛充满了乐趣和活力,在探究圆锥体积公式时,设计了两次试验,使学生更加明白了:只有“等底等高”的圆锥和圆柱体积才能有3倍的关系。引导学生由表及里,层层逼近的过程,进行深的信息加工。

3.鼓励学生独立思考,引导学生自主探索,合作交流。

在教学中,我积极鼓励学生独立思考,自主探索,小组合作交流,通过小组合作完成实验过程,实验过程中培养学生敢于质疑,乐于交流与合作的能力。

【教学过程】

一、创设情境,引发猜想

1.播放录像。

夏天,小朋友们玩得大汗淋漓。小雅去“便利超市”购物,在冷饮专柜那儿买了一个圆柱形的雪糕。这一切都被躲在一旁的小林看见了,小林的眼珠咕噜一转,计上心来。他去冷饮专柜里买了一个圆锥形的雪糕。小雅刚张开嘴,满头大汗的小林拿着一个圆锥形的雪糕一溜烟跑了过来。(图中圆柱形和圆锥形的雪糕是等底等高的。)

2.引导学生围绕问题展开讨论。

二、自主探索,操作实验

同学们利用老师提供的实验材料分组操作,自己发现圆柱与圆锥体积间的关系。注意每个学生要先根据老师提供的材料思考实验方法,然后小组讨论拿出最优方案,组员分好工,然后开始实验。

1.小组实验。

(1)学生分5组操作实验,教师巡回指导。(每组的圆柱和圆锥是等底等高的,各组间的大小不同。教师提示:用沙子做实验的小组往容器里装沙子时注意不要用手使劲压,装满后用尺刮平即可。用水做实验的小组往容器里装水时注意把容器装满。这样能保证实验的科学性。)

(2)同组的学生做完实验后,进行交流

2.集体交流。

(各小组汇报,结论是:圆柱的体积是圆锥体积的三倍,也就是说圆锥的体积是圆柱体积的三分之一。)

3、深入探究“等底等高”

4.推导公式。

同学们尝试一下,用V、S、h、表示圆锥的体积公式?(生独立写公式)

5.问题解决。

同学们再回到故事中,你们应该知道小雅和小林怎样交换才公平合理了吧?它需要什么前提条件?

三、运用公式,解决问题

1、教学例3。

工地上有一些沙子,堆起来近似于一个圆锥。它底面直径是4米,高是1.2米。这堆沙子大约多少立方米?(得数保留两位小数)

2.学生尝试计算,指名板演,集体订正。

汇报:(1)沙堆底面积3.14×(4÷2)2

=3.14×4

=12.56(平方米)

(2)沙堆的体积1/3×12.56×1.2

=4.19×1.2

≈5.02(立方米)

答:这堆沙子大约5.02立方米?

四、实践应用,拓展深化

1、填空。

1)一个圆柱体积是10立方米,和它等底等高的圆锥体积是()立方米。

2)一个圆柱钢材能溶铸成()个与它等底等高的圆锥体。

2、判断。

1)圆锥体积是圆柱体积的1/3。()

2)圆柱体积一定比圆锥体积大。()

3)一个圆柱体木料,把它加工成最大的圆锥体,削去的部分的体积和圆锥的体积比是2:1()

4)圆锥体积等于和它等底等高的圆柱体积的1/3。()

3、圆锥的底面积是7.8平方厘米,高是2厘米,体积是多少立方米?

4、神舟五号宇宙飞船的上端是一个圆锥形,它的底面直径是2米,高2.1米,你能求出它的体积吗?

5、哈南双语幼儿园的屋顶是圆锥形,测量出它的底面周长是12.56米,高是6米,它的体积是多少?

五、质疑问难,总结升华

通过这节课的学习,你们有哪些收获?

【板书设计】

圆锥的体积

1/3

V=1/3Sh

例3

工地上有一些沙子,堆起来近似于一个圆锥。它底面直径是4米,高是1.2米。这堆沙子大约多少立方米?(得数保留两位小数)

(1)沙堆底面积3.14×(4÷2)2

=3.14×4

=12.56(平方米)

(2)沙堆的体积1/3×12.56×1.2

=4.19×1.2

≈5.02(立方米)

答:这堆沙子大约5.02立方米?

【教学资源】

义务教育课程标准实验教科书教师教学用书

【教学反思】

今天上了《圆锥的体积》这节课,反思整堂课的教学,自我感觉较为满意的是以下几点:

1.大胆猜测,培养猜测意识

假设和猜想是科学的天梯,是科学探究的重要一环。任何发明创造我想都是离不开假设和猜想的。基于这样的认识,结合本节课教学内容的特点,我在教学中把生活中的故事引入数学课堂,让学生大胆猜想它们的体积可能会有什么样的关系?使课堂充满生机、乐趣,激发了学生的求知欲,然后让学生借助学具进行实验、探究。事实证明这样教学设计不仅仅是能够培养学生的猜测意识,更重要的是充分调动了所有学生的积极性,大家探究的欲望强烈,为本节课的成功教学奠定了基础。

2.操作验证,培养科学的实验观。

数学不仅是思维科学,也是实验科学。教学中,学生能通过观察、猜测、实验、验证、推理与交流等数学活动,积极主动地发现了等底等高的圆柱与圆锥体积间的关系,进而推导出圆锥体积的计算公式:V=1/3Sh。在整个教学过程中,我非常重视让学生参与教学的全过程,学生始终是活动的主体。同时引导学生用科学的态度去对待这个实验,实事求是,认真分析自己的实验结论,培养了学生科学的实验观。

3.重视课堂资源的生成

教学中“圆柱和圆锥不等底等高,他们的体积还是三倍的关系吗?”这一教学环节不是预先设计的。它是课堂中随机生成的,却饱含着教师和学生真实的、情感的、智慧的、思维和能力的投入,有互动的过程,气氛相当活跃。在这个过程中既有资源的生成,又有过程状态生成,让学生在实践中进一步明确了:只有等底等高,圆锥的体积才能是圆柱体积的三分之一。总之,这节课,每个学生都经历了“猜想---实验---发现”的自主探究学习的过程。学生获得的不仅是鲜活的数学知识,获得更多的是科学探究的学习方法和研究问题的方法,孩子们不仅收获了知识更体验到了探究成功的喜悦。

【教学评析】

1.教师能深入了解学生,对学生的原有认知水平、知识技能、情感态度,即学习起点能力分析得比较清楚。力求构建一种非直线型的教学路径,这样的教学设计思路值得提倡。

2.教师能利用《数学课程标准(实验稿)》的理念处理教材,加工教材。如本节课结合了现实中的具体情景,创设了一个学生喜闻乐见的生活情境,并把这一故事情节贯穿整节课的始终。教学中做到了一波未平,一波又起,整节课的结构浑然一体。教师遵循了“现实题材——数学问题——数学模型——数学方法——解决问题”的过程来设计教学,引导学生亲身经历将实际问题抽象成数学模型,并进行探索与应用的过程,使学生逐步学会用数学知识和方法解决生活中的实际问题。

3.本节课在实验探索中,学生通过小组合作,发现出等底等高的圆柱体积是圆锥体积的3倍,有的同学会持反对意见,这样刚刚建立起来的平衡旋即被打破,当大家发现他们的实验器材不等底等高时圆柱体积不是圆锥体积的3倍,又能建立起新的平衡,学生在“平衡——不平衡——新的平衡”中,认知结构得到了丰富和发展。

4.多样化的数学活动,如实验、交流、推理、问题解决使学生的意义建构有了坚实的基础。学生的情感在认知的过程中也得到了和谐的发展,他们在相互交往中加深了理解、沟通和包容,品尝到了探索成功的喜悦。

5.在数学课堂上教师不失时机的进行德育教育,体现了在学科中“情感态度价值观”的培养,在学科中渗了透德育教育,为数学课堂增添了亮丽的一笔。

6、本节课教师引领学生积极探究新知,学生成为课堂上真正的主人,学生积极参与、自主合作探究知识,实现了学习方式的多样化。课堂上师生互动,注重学生的态度和情感的体验。回归常态教学,教学真实、扎实、朴实,构建了充满生命活力的课堂。

《圆锥的体积》课堂实录

一、创设情境,引发猜想

1.播放录像。

师:夏天,小朋友们玩得大汗淋漓。小雅去“便利超市”购物,在冷饮专柜那儿买了一个圆柱形的雪糕。这一切都被躲在一旁的小林看见了,小林的眼珠咕噜一转,计上心来。他去冷饮专柜里买了一个圆锥形的雪糕。小雅刚张开嘴,满头大汗的小林拿着一个圆锥形的雪糕一溜烟跑了过来。(图中圆柱形和圆锥形的雪糕是等底等高的。)

2.引导学生围绕问题展开讨论。

师:小林对小雅说:“我的雪糕可好吃了,我们来换一换吧!”小雅看了看她的雪糕,又看了看自己的雪糕,小雅陷入了沉思……”同学们,故事先讲到这。如果此时小雅和小林换了雪糕,你觉得小雅有没有上当?

生:我觉得小雅上当了,小林的雪糕小。

师:好,你的眼力真不错。如果这时小林手上又多了一个同样大小的圆锥形雪糕。小雅这时和小林换雪糕,你们觉得公平吗?

生:公平。

生:我觉得还是不公平,小雅还是吃亏。

师:同学们有不同的看法了,假如你现在就是小雅,小林手中的圆锥形雪糕有几个时,你才认为公平合理,才肯与他交换?

生:四个。

生:五个。

生:三个。

师:小雅究竟用几个跟小林怎样交换才公平合理呢?(学生沉默,几秒后有学生举手)生:老师如果知道他们的体积就好办了,可是我们只会求圆柱的体积,不会求圆锥的体积。(学生均点头)

师:你的想法非常好。那圆锥的体积怎样计算呢?大家想知道吗?

生合:想。

师:好,这节课我们就一起来探究一下圆锥的体积这部分知识。(板书)

二、自主探索,操作实验

师:下面,请同学们利用老师提供的实验材料分组操作,自己发现圆柱与圆锥体积间的关系。注意每个学生要先根据老师提供的材料思考实验方法,然后小组讨论拿出最优方案,组员分好工,然后开始实验。

1.小组实验。

(1)学生分5组操作实验,教师巡回指导。(每组的圆柱和圆锥是等底等高的,各组间的大小不同。教师提示:用沙子做实验的小组往容器里装沙子时注意不要用手使劲压,装满后用尺刮平即可。用水做实验的小组往容器里装水时注意把容器装满。这样能保证实验的科学性。)

(2)同组的学生做完实验后,进行交流

2.集体交流。

师:下面请各个小组同学汇报你们是怎样实验得出结论的。

(各小组汇报,结论是:圆柱的体积是圆锥体积的三倍,也就是说圆锥的体积是圆柱体积的三分之一。)

3、深入探究“等底等高”

师:各小组的结论都是一样的:圆柱的体积是圆锥体积的三倍,也就是说圆锥的体积是圆柱体积的三分之一。那老师就奇怪了,你们各小组间的圆柱和圆锥的大小不一样啊,结论怎么会一样呢?难道你们手中的圆柱和圆锥之间有什么奥妙吗?想知道吗?快探究一下吧!(生合作探究)

师:你们发现了什么?

生:我们发现圆柱和圆锥的底面积相等高也相等。

师:这用四个字概括就是“等底等高”。

生:我们也发现圆柱和圆锥等底等高。

师:也就是说只有圆柱和圆锥是等底等高的时候,圆锥体积才是圆柱的体积的1/3。生:(举手提问)老师,圆柱和圆锥不等底等高,他们的体积还是三倍的关系吗?

师:这名同学提得问题非常有价值,他问:“圆柱和圆锥不等底等高,他们的体积还是三倍的关系吗?”大家说是吗?

生:我认为圆柱和圆锥不等底等高,他们的体积不会是3倍的关系了。(大多数同学点头,同意他的观点。)

生:我和他的意见不同,我认为圆柱和圆锥不等底等高,他们的体积还是三倍的关系。(有几名学生表示同意)

师:有的同学认为是,有的同学认为不是。那么这样,小组间调换一下圆锥,使你手中的圆

更多相关内容: