第1篇:运算定律教学反思
一、着力引导学生自主探寻、整理数学知识
首先出示六道不同运算顺序的'计算题,让学生口答正确的运算顺序,即每步先算什么,再算什么。让学生充分回忆运算顺序的相关知识,体会运算顺序的不同。在学生充分回忆运算顺序的基础上,组织学生自主分类,在小组中充分交流,从而整理出三类不同类型计算题的的运算顺序,达到整理复习的目的。接下来我在学生归类的基础上进行运算顺序的提炼,“同级运算,从左到右”;“两级运算,先算高级”;“含有括号的运算,括号优先”,来强化学生的认知。
然后在复习、强化运算顺序的基础上,再出示几种与刚才六道不相同的计算题,检测学生运算顺序使用的正确与否。
接着以最后一题为切入点,引出运算律这一概念,自然过渡到下一环节——运算律与运算性质的复习中来。让学生在小组中回忆并整理学过的各种运算律,并举例说明,注重概念定律与实际的结合。
最后趁热打铁,加以引导:“其实减法和除法也有一些运算顺序,能让计算变得简便,回忆一下,相互交流一下。”进一步丰富学生运算规律的知识,促进学生对运算规律的认识。
二、注意练习的层次性和形式的多样性
在充分复习运算顺序和运算律的基础上,我还开展了三组有效的练习:
第一组:填空。
第二组:判断。选取学生常出现的错误,让学生进行判断改错,进一步强化学生对相关运算律及运算性质的认知。
第三组:简便计算。这里进行强调:在计算中要仔细观察,有些不使用运算律和运算性质也可以简便计算;有些题目无法一眼看出能否简便,但在计算过程中可以简便计算,更深一层的挖掘运算律及运算性质,体会实际运用中有时可以用平时积累的经验来简便计算,有时在计算过程中使用简便计算,强调灵活运用的重要性。
存在的问题:
1、由于间隔时间较长,大部分学生已经把运算律的内容忘记,导致不能灵活运用,从而达到简便运算的目的;
2、部分学生甚至不能掌握运算顺序,即:先算乘除,再算加减,有括号的先算括号里边的;
3、在计算过程中,仍然存在以前的问题,如:小数与分数的加减,整数、小数、分数的乘除运算。
这些问题的存在,使我认识到:只有使他们真正理解四则混合运算的顺序和运算律,在计算过程中做到胆大心细,而要做到这些,任重而道远,必须找到一些典型例题,加强这方面的练习强度。相信在师生的共同努力下,一定能在四则混合运算中游刃有余。
第2篇:运算定律教学反思
《运算定律与简便计算》这一内容是四年下册第二单元的内容,课文呈现给我们的是一道与生活有关的解决问题这一方面的题。首先,我让同学们用自己喜欢的方法来做这道题,大部分同学走马观花的看了一下,就对我说,袁老师,这道题太容易了,我们学过的。“是啊,我们是学过,不就是连加类型的题嘛,但是你们要从中发现问题,要能够看出今天这节课到底通过这道题告诉我们一个什么知识……”这时,我让同学们交流想法,老师及时板书,让学生从众多算式中来发现:原来这节课,这一解决问题题是为了让我们用简便运算。
我趁热打铁,布置了几个连加的题目,让学生发现问题:学生观察后回答:加法交换律只是二个加数位置的交换,和不变,而结合律中,有时要把后二个加数相加,有时把后二个数相交,有时根据需要还需要先交换位置然后再利用加法结合律相加,我发现在上这一单元的内容时,学生对于加法和乘法的交换律掌握的比较好,然而对于乘法结合律和乘法分配律常混淆,针对这一现象,我认为在练习课时要加以改进。
注重从学生的实际出发,把数学知识和实际生活紧密联系起来,让学生在不断的感悟和体验中学习知识。以解决问题为切入点,激发学生学习的积极性,在学生探索时,酌情因势利导,不失时机地给予适度启发,学生交流时,耐心倾听,洞悉学生的真实想法,加以必要的点拨,帮助学生理清自己的算法。于是我在教学中强调了以下几点:
1.让学生学会分类:在教学中我把各种简算题型分类整理,尤其对于乘法分配律进行详细归类和整理。让学生从整体认识到个别比较,加深简算的印象。我发现这样更利于学生的学习与思维。例如:201×87=(200+1)×87=8700+87=8787(乘法分配律拆项法)54×43+54×56+54=34×(43+56+1)=34×100=3400(乘法分配律添项法)
2.让学生认真观察,自己悟出乘法分配律与乘法结合律的不同。在教学中,我比较重视乘法分配律和结合律的比较区分,可学生还是多次把分配律说成结合律,在计算过程中,也多次出现这样的混淆。尤其是对乘法分配律的算理还是不理解,针对这一问题,我让学生注意观察,乘法分配律有两种以上运算符号,而乘法结合律只有一种运算符号。让学生在比较中区分,在区分中比较。
3.让学生知道如何一下就能凑整。简算与学生的数感是密不可分的,因此,在教学中,我注重培养学生良好的数感,让学生多观察数据,用选数凑整十、整百的方法训学生,对学生提高运算能力,大有益处。当然,这不是一朝一夕就能提高的,而是需要大力练习。
4.利用生活实例让学生知道简便运算给我们的生活带来的好处。注重生活练习实际,将简算运用在实际生活当中,易于学生接受。可达到事半功倍的效果。学习的目的在于运用,本单元的学习不仅仅是为了让学生知道在计算中可以应用运算定律使计算简便,更重要的是要让学生懂得生活中很多的实际问题可以有不同的途径来解决,学习要善于分析和总结,选择合理、方便、简单的方法更利于我们解决实际问题,要让学生真正理解学以致用的道理。
第3篇:运算定律教学反思
“算法易模仿,算理难深入”这是孩子们学习运算是碰到的一大难题,同时也是我们教师教学是面对的棘手问题,今天的主题研讨活动给了我们一个很好的诠释,既提供了理论支撑,又有了具体操作的章法可循,可以说是受益匪浅。
这次活动先由来自北京教科院中心的贾福录老师带来的《“数的运算”的知识结构与教学思考》微讲座,然后是《20以内退位减法》和《运算定律》两个单元的单元整体教学说课研究,以实例帮助老师们理解如何帮助学生理解加减乘除的算理算法。贾老师对运算教学中的“承重墙”和“隔断墙”的区分,让我有了清晰的理解。承重墙“是数学的本质,也是学生发展的基石。运算教学中的”承重墙“是:支撑学生探索算法、理解算理的重要”数学意义”;在运算学习中逐步积累和形成的经验与能力。“隔断墙”是不利于学生知识建构、阻碍学生发展的数学内容及表面形式。运算教学中的“隔断墙”是不同阶段学习的运算法则、运算方法。如:凑十法、破十法、平十法等。让学生通过这些方法表面上的不同,体会到本质上的联系,就是打通“隔断墙”。
在《运算定律》单元整体设计中,我们更全面的认识了它的内涵和价值,根据前测数据设计教学目标,教学设计已有板块很到位。通过对学习本质、学习内容蕴含的数学思想和方法、列举人教版、北师大版、苏教版教材编排特点抓住了核心概念,从而设计出匹配的教学目标。在两位老师的解读中,我们深入解读课标、梳理教材中的前位和后位知识,从“积累模型建立的学习经验”和“凸显推理、抽象、建模思维方式的构建”两个方面入手,在问题情境、列式解答、发现规律、举例验证、算理解释、模型表达的过程中实现模型的建构,在探寻规律环节通过四个步骤完整地经历建模的全过程,从学习知识到学习方法,实现新旧知识的有效沟通,真正内化运算的意义。
两位老师进运算定律单元进行了整体设计。他们从单元的内容入手进行分析,明确不同内容的层次水平和学习要求,清晰的指出了本单元的能力目标。然后分析不同年级的教材找到了知识间的前后联系,发现运算律在运算教学中具有核心地位。基于对学情,教学内容的分析,将本单元的内容打通,将具有相同特点的交换律放在一起研究,把简单的“加法交换律、乘法交换律”整合在一课时,承载起种子课的作用,让学生初步形成探究的方法,为后面探究其他运算定律做好准备。
这次课程也帮我打通很多知识之间的连接点。如:数的运算和数的意义其实是不分家的;课标提出的运算能力是正确的进行运算,在传授过程中,还要注意对抽象概念的理解;加法和减法其实是单位的累加和累减;学习整数、小数、分数加减法时,要沟通算法之间的联系。
听了老师们的讲解和专家们的点评,使我受益匪浅。数的运算通过直观教学让学生更易理解算理,数形结合,抓住认知起点。数运算教学在小学阶段是非常重要的内容,理解数的核心本质很重要。从生活经验出发,直观教学,理解抽象的内容。用实物教学,以及形象的图片讲解,非常有趣味性。让孩子们发自内心的喜欢,主动去学。感谢各位老师的经验交流与分享!
通过这次的研讨,在专家老师的解读与分析,让我对数学学科小学阶段的教学过程中有所理解承重墙与隔断墙,今后教学实践活动中怎样把握教材所呈现的知识点间的联系,采取有效的手段引领孩子们学习数学概念,数学知识,受益匪浅。感谢专家和老师们的干货分享,对我来说是实质性的指导,正如视频所讲,我们面临同样的问题,学生算法容易模仿,算理确是难以理解,今天有了更多的方法来指导我的教学,再次感谢这次活动。
第4篇:运算定律教学反思
在本节课的教学中,抓住学生的感悟,利用了知识迁移是方法,使学生能用乘法的运算定律使一些小数的计算简便,并能灵活运用地进行四则运算,提高了学生的计算能力。
一、在复习整数乘法运算定律的基础上进行教学
先让学生通过对整数乘法运算定律的回忆,熟悉运算定律在在整数运算中的运用,在利用计算比较是学生感悟运算定律在小数乘法中同样适应。
二、在教学中以学生为主体,教师适时引导点拨
首先出示几个算式
0.71.2○1.20.7
(0.80.5)0.4○0.8(0.50.4)
(2.4+3.6)0.5○2.40.5+3.60.5
让学生先观察每组算式有什么特点,实际上这三组算式分别运用的是整数乘法的交换律、结合律、分配律,但是这三组算式都是小数乘法,也符合吗?因此可以先让学生猜测,再进行验证。通过验证,学生发现整数乘法的运算定律在小数乘法中确实适用。先猜测再验证是学生学习数学的最基本的办法,也是科学的世界观养成的基础。在这一环节中,教师的作用只是引导点拨,决不把规律强加给学生,而是让学生自己去猜测、发现、验证。
三、加强巩固,提高学生学习的兴趣
学到了知识,然后用学到的知识去解决问题才是数学学习的真谛。既然发现了整数乘法运算定律在小数乘法中同样适用,再运用这些定律使小数计算变得简便,这一步教学能激起学生运用新知识的欲望。接着出示
0.254.7844.80.25
0.652011.22.5+0.82.5
在简算的过程中让学生体验成功的快乐。
本节课是一节典型的利用旧知识迁移新知识的课,学生已经对整数乘法运算定律掌握得很好,但是这些运算定律到底是否适合于小数乘法,也是这节课要探究的主要内容。因此这节课让学生先猜测,再验证,从而得到这些运算定律同样适用于小数乘法。然后就用得到的这个规律来对一些小数乘法进行简便运算。本节课始终遵循着猜测验证应用的教学主线,使学生始终亲身体验参与知识的结构过程。
第5篇:运算定律教学反思
最近,有幸听了东洲小学青年教师基本功比赛选手俞老师执教的数学人教版教材《加法运算定律》,听后深受启发,东小数学课堂教学真正在贯彻新课程标准的理念。
一、从现实生活情境中提供学生发现运算定律
课的一开始用讲故事形式导入,既吸引学生又激发学生思考,同时又直接切入教学内容。故事为:猴妈妈给小猴子吃桃,规定早上吃4个,晚上吃3个,小猴子感觉这样吃少了。猴妈妈改变成早上吃3个,晚上吃4个,小猴子感到很高兴。老师问:小猴子占到便宜了吗?这个问题一提出,学生马上明确了第一种分法是3+4,第二种分法是4+3,实际上是一样多的,从而引出生活中经常接触到如7+8和8+7许多这样的例子,其结果是一样的,自然而然地引导学生并要归纳这些数学现象,并且明白这个现象的实质就是交换两个加数的位置,和不变。
二、从个别现象类推中引导学生概括运算定律
教学加法结合律时出示学校三个班参加冬季三项比赛的人数,让学生提出问题,教师根据学生提出的许多问题中选择一个对本节课需要引入新知研究的问题“三个班一共多少人参加比赛怎样计算?”让学生进行计算,根据学生多种计算算式中列出28+17+23和28+(17+23)、23+28+17和23+(28+17)等,让学生观察这两个算式的相同和不同之处,学生的新知研究从根据相同和不同之处迈向概括出了加法结合律。接着又通过一组题组让学生分组练习,通过分组练习学生体会到加法结合律的存在对计算时的简便之处,教师的教学设计目的从让学生个别现象类推到引导到概括出加法结合定律,教会了学生的认知方法。题组为:(69+172)+28、(207+155)+145,69+(172+28)、207+(155+145)。
三、从具体练习应用中启发学生体会定律优越性
本节课的教学目标预设为通过现实生活中的问题解决,引导学生抽象概括并理解加法交换律、结合律,感知加法交换律、结合律对于计算的简便之处。如何让学生感知?执教者通过对填空题的抢答:204+57=57+□、(45+36)+64=45+(□+□)、57+65+135=57+(□+□)、23+46+77+54=(□+□)+(□+□)及对题目74+102+98你认为怎样计算方便,把学生引入了如何运用加法结合律进行简便计算的领域,这个引入不是强制的,而是学生自觉获得的需要,也是对新知学习价值的创生。
第6篇:运算定律教学反思
一、调整教材顺序,促进有效教学
“乘法交换律”与“加法交换律”有着相似之处,都是交换数的位置进行运算,结果不变。“乘法的结合律”的教学可以与“加法的结合律”的教学安排在共一课时。学生通过具体事例的举例说明,得出a+b=b+a,再通过讨论得出“交换两个加数的位置,和不变,这叫加法交换律”。然后再安排教学乘法交换律,让学生通过举例说明,得出a×b=b×a,再通过对“加法交换律”概念的类比,推理出“交换两个因数的位置,积不变,这叫做乘法交换律”。再以同一课时或者前后课时,安排教学“加法结合律”与“乘法结合律”,通过举例说明得出a+b+c=a+(b+c),再通过讨论从而得出“先把前两个数相加,或后两个数相加,和不变这叫做加法结合律”。教学乘法结合律时,再通过具体事例得出a×b×c=a×(b×c),再对“加法结合律”的概念的类比推理,得出“先把前两个数相乘,或先把后两个数相乘,积不变,这叫做乘法结合律”。
二、设计对比练习,促进有效教学
在新知识还没有完全掌握的情况下,新知识、新方法会对旧知识、旧方法产生认知障碍。因此,要设计对比练习,让学生从知识与方法的障碍中解脱出来。
学习连加、连减的简便计算后,往往会对加减混合产生方法的影响与方法上的障碍;同样,学习连乘、连除的简便计算后,也会乘除混合的计算产生影响。这种情况下,一定要加强对比练习,让学生从混淆走到清晰,让学生从障碍中走出来。
如,463+82+18,463-82-18,463-82+18
9600×25×49600÷25÷49600÷25×4
三、进行逆向训练,促进有效教学
逆向运用
加法结合律:346+(54+189)=346+54+189
乘法结合律:8×(125×982)=8×125×982
乘法分配律:89×75+89×25=89×(75+25)
减法的性质:894-(94+75)=894-94-75
连除的简便:350÷(7×2)=350÷7÷2
逆向运用训练,有利于培养学生的逆向思维。尤其对a-(b+c)=a-b-c和a÷(b×c)=a÷b÷c的运用在有帮助。因此逆向运用的训练,很有必要。
四、加强应用训练,促进有效教学
例1、求下列图形“L型”菜地的面积;
9厘米21厘米9厘米
例2、学校合唱团99个学生,每人一套报装185元,后来再加上同等价格的指挥服装一套。一共需要多少元?
例3、学校买了5副羽毛球拍,花了330元,还买了25筒羽毛球,每筒羽毛球12个,每筒羽毛球32元。又买了8个篮球。
1、学校一共买了多少个羽毛?
25×12
=25×4×3
2、买羽毛球一共花了多少元?
32×25
=8×4×25
3、每枝羽毛球拍多少元?
330÷5÷2
五、加强错例分析,促进有效教学
例1:25×32×125例2:32×125
=25×4+8×125=4×(8×125)
=4×8×4×125
例3:463-82+18例4:9600÷25×4例5:25×(400+4)
=463-(82+18)=9600÷(25×4)=25×400+4
第7篇:运算定律教学反思
加法运算定律和乘法运算定律。加法运算定律包括加法交换律和加法结合律;乘法运算定律包括乘法交换律、乘法结合律和乘法分配律。
学生对于加法运算定律和乘法的交换律掌握较好,可运用这两个定律对一步加法和乘法进行验算,基本能够灵活运用。然而对于乘法结合律则运用不是很好,乘法分配律则更为糟糕。
细想有以下几个原因:
第一,学生现在只是能够初步认识,弄明白这三个乘法运算定律,还不明白这几个运算定律的作用和意义。
第二,学生不能正确的分析算式并正确的运用运算定律,尤其是乘法分配律,它是乘法和加法的运算定律,学生忽视运算符号,极易把乘法分配律和乘法结合律混淆。
第三,对于乘法分配律,有的学生甚至运用运算定律折腾了一番又回到了原来的算式,不会灵活处理。
总之,学生并没有深刻体会到运算定律带来的方便,解决办法只能是多讲多练,不断的培养学生的数感,在不断的重复练习过程中,体会应该如何运用运算定律,也就是如何做题。等待讲解了下节内容简便运算之后,我想学生会得到一个明确地感悟到原来在计算的过程中运用运算定律可以使运算过程变得简单,这样,学生在计算的时候,自然就会去运用了,而且会十分的感兴趣。
第8篇:运算定律教学反思
在教学“整数乘法运算定律推广到分数乘法”这一课后,我做了深刻的反思:
首先我不仅注重了情境的导入,提高孩子们的参与热情。
开启课时,我注重从孩子的身边挖掘素材,引出整数乘法运算定律,加以复习巩固,紧接着引导学生回忆这些运算定律曾经运用到什么知识中,引导到小数乘法的简算中,为后面的新知学习打下良好的基础。真正达到了“以旧导新,以旧带新”的效果。
同上我还鼓励学生大胆的质疑与猜想,激发学生内在的求知动力。在新授课时,我设计的两个环节,引起了学生强烈的求知欲望。
第一,在复习完后,我让学生自己说说,你现在最想研究一个什么样的问题?孩子们表现出空前的热情,比如有的孩子谈到想研究一下整数乘法运算定律是否可以推广到分数乘法?于是我鼓励学生根据已有的知识,去大胆的猜想。孩子们的思维活跃极了,甚至大大超出了我事先的预料;
第二,在探究确认上述问题后,我又让学生大胆的质疑,定律推广到分数乘法中会起到什么作用呢?真的能简便吗?孩子的好奇心又一次被激起,他们又乐此不疲的投入到了简算的探究中去。整堂课下来,孩子们始终处在“质疑——猜想——验证”的学习过程中,真正变成了学习的主人,而且也让我懂得的教是为学服务,要想提高教学质量,关键在课堂!
第9篇:运算定律教学反思
加法运算定律是人教版四年级教学上册第三单元第一课时的内容,本节课的教学目标是探索并掌握加法交换律和加法结合律,能初步运用加法交换律和加法结合律进行简便运算。本节课的重点是掌握加法交换律和加法结合律并能初步运用,难点是运用加法交换律和加法结合律进行简便运算。
本节课,我利用三代导学案进行教学,让学生依据自学导读单在前一天晚上自学本节课的内容,对加法交换律和加法结合律的探索过程、表达方法都有了一个初步的了解。课堂上我们就直接同桌交流自学导读单内容,老师只巡视,不讲评。在交流完自学导读单之后,我们就开始完成分层训练的第一题,这道题是根据已知的等式,写出运用了什么运算定律,通过这道题让学生回顾并展示加法交换律和加法结合律的内容及字母表示的方法,这是本节课的核心知识点,所以我在黑板上进行了板书。其实分层训练第一题的处理,承载着教学新知的任务,只不过这个新知学生已经提前预习了,课堂上只是一个学生的展示和老师的点拨。分层训练的第二题,是根据运算定律进行填空,对运算定律起到进一步巩固的作用。分层训练的第三题是运用加法运算定律进行简便计算,考虑到学生初次接触到这种题,所以就安排学生先做第一题,并让两个学生演板,一个学生按从左往右的顺序计算,并不简便,另一个学生是用加法结合律先把后两个数相加,因为后两个数正好能凑成整百的数。这样,通过两种方法的对比让学生切实感受到哪一种方法简便,并且知道了简便的方法就是利用加法运算定律把能凑成整十、整百的数放在一起相加。接着,让学生完成后两道题,这时,应该有一部分学生能够比较顺利的用简便方法进行计算,还有相当一部分学生有困难,我看主要原因是学生不能发现哪两个数能凑成整十整百的数。通过今天的作业来看,今天的内容学生掌握的并不好,还需要在接下来的学习中加强练习,不断提高运算的能力。
本节课还有很多不足之处,比如:学生交流的习惯还没有养成,还不能做到完成后就自觉交流。全班的交流也应该有选择的进行,而不是每道题都交流,这样就可以节省出更多的时间对重难点的内容加以练习和点拨。本节课的难点是运用加法运算定律进行简便计算,突破这个难点的方法是找出算式中哪两个数能凑成整十、整百的数,课堂上应该把这个方法告诉学生,比如看两个数个位上的数能否凑成整十数。还有学生的做题格式,还需老师的示范。
总之,本节课看似流程齐全,学生活动积极,但是细节处理还不够得当,还需在以后的教学中不断改进。
第10篇:运算定律教学反思
本单元是系统学习基础运算理论知识,学生在前面的学习中已经有了大量加法、乘法交换或结合性的经验,是学习本单元知识的认知基础,通过本节课的学习,学生可以加深对加法运算定律的理解,也为学生今后进一步学习奠定坚实基础。
1、重视规律发现的过程
本节课的学习就开启了学生对四则运算规律的探究,发现一条规律并不难,但掌握发现规律的方法十分重要。所以从学习加法交换律开始,就一直让学生亲身经历探究和发现的过程“观察发现--举例验证--归纳总结--字母表示”,不断强化具体步骤,就教给学生一把发现规律奥妙的金钥匙。
2、重视直观演示的操作
很多教师在教学规律课的时候仅仅只是局限在规律发现的过程,而我在教学本节课时是把规律的发现建立在加法的本质上,通过线段图直观演示的操作,帮助学生发现和理解规律,丰富了学生的认知,形成了基本模型。
3、充分激活已有经验
在此之前学生已经系统地对加法进行了学习,今天就在具体的生活情境中展开研究。数学的学习是在活动中建立起来的,学生在老师的带领下从生活中的数学开始,逐步抽象到用字母来表示规律,让学生的思维循序渐进的进行了质的飞跃。
第11篇:运算定律教学反思
本节课我只设计了两个环节,(1)复习运算定律,(2)运用运算定律进行简便运算。在复习运算定律时,让学生通过具体的例子表示运算定律,为下一步的灵活运用奠定了基础。
简便计算应该是灵活、正确、合理地运用各种性质、定律等,使复杂的计算变得简单,从而大幅度地提高计算速度及正确率。开始时学生对简算还挺感兴趣,毕竟简算可以摆脱那些繁琐的四则混合运算了,也不用竖式计算了,可是随着简算类型的不断增多,学生开始对一些类型混淆了,特别是乘法结合律和乘法分配律混淆的最多。随着简算方法的多样化,简算的准确性也大打折扣。简算不仅要求学生能明确运算顺序,正确计算,而且还要求学生有一定的观察能力,甚至要有一些直觉,能够进行合理的分析,找出其中能够进行简便运算的特征,并合理地进行简便运算。
上了这节练习课后,学生不仅能解决问题,而且简便计算的方法也掌握得比较好,所以我认为“简便计算”的教学必须遵循“以生活实际为出发点,展示知识的发生过程,让学生知其所以然。”
第12篇:运算定律教学反思
小学阶段的数学总复习,我本着每天复习内容少而精的原则,把所要复习的内容理解透掌握好。
本课我只设计了两个环节,(1)复习运算定律,(2)运用运算定律进行简便运算。在复习运算定律时,让学生通过具体的例子表示运算定律,为下一步的灵活运用奠定了基础。在总复习时不能满足于掌握常见的五个运算定律,要加以引申,扩展学生的知识面。应用运算定律进行简便运算时,我改变以往的做法,老师出题学生做,而是让学生自己自编或搜集简便运算的题目。这样学生积极性更高了,看我编的题目能不能选上。学生在编题和选题时要进行大量的阅读,这本身就是一个自我复习的过程。学生出的题目很出乎我的意料,学生们精选的题目具有以下三个特点:
(1)覆盖面全,涵盖了小学阶段所有的简便运算的类型。
(2)关注了学生易错的题目。
(3)关注了一些生僻的解法。我们要相信学生,给学生一个舞台学生会还你一片精彩。
最后还找了一些学生平时容易出错的题目供学生判断和一些思维拓展题供学生计算,让学生以竞赛、限时做题看谁做得又多又对等多种形式进行训练,计算题枯燥无味,学生在测试中,如果做的好,采取一些鼓励机制,如加分或加星等。
整堂课下来学生的精力高度集中,教学效果也很好。
第13篇:运算定律教学反思
上课之前,我浏览了许多的案例,想寻找一种生活情境导入我的新课。目的当然也很明确:为了趣味。尽管我愁思冥想,结果还是设计不出一种有趣的生活情境。这一课设计生活情境不好创设,如果要创设生活情境,三个运算定律不是要创设三个生活情境吗?如果要创设三个生活情境不是显得杂乱而无序吗?后来思考:情境除了生活情境,数学本身也是一种情境。而且是一种很好的情境。于是我以一道尝试计算题导入,效果也不错。这一点所给我的启迪是:情境的创设不能只仅仅为了求“趣”而求“趣”,情境的创设一定要为数学主题的学习服务。一定要“量体裁衣”,不好创设生活情境的内容,可以从数学本身的问题入手,数学本身的情境也是一种情境,不必舍本求末,缘木求鱼。
在这堂课的习题练习设计中,我安排了“填一填”、“练一练”、“议一议”、“我能行”几个环节,体现了一个由“运算定律的感知------正式运算定律的运用-------变式运算定律的运用”的过程,这种层次性的教学,更符合学生的实际。在以后的教学中,不论是概念课,还是计算课,我都将要注意运用。
第14篇:运算定律教学反思
加法运算定律是四年级下册第三单元内容,是在加法及验算、四则混合运算的基础上进行教学的。本节课的新知识在以前的数学学习中都有相应的认知基础,学了本节的新知识又可以促进学生更深入认识原来学过的知识和方法。在之前的教学中,运算定律都是让学生通过观察、比较和分析,然后让学生根据对运算定律的初步感知举出更多的例子,进一步分析、比较,发现规律,并叙述所发现的规律。我认为这样做学生固然能够掌握运算规律,但并没有从本质上真正理解规律。因此,我在教学时,重点让学生从加法的意义上去理解并掌握规律,主要做到以下三个方面:
一、唤起学生的认知经验,初步感知规律。
教学中,结合情境引导学生列式解答问题,并抓住两个不同加法算式的计算结果相等,且都能解决问题为切入口,引导学生得到等式。
二、组织举出相关例子,充分展开讨论,初步提炼规律。
请学生以上一等式为参照,再举一些有着同样现象的例子,讨论交流具有此类特征的算式的特点。在此基础上,引导学生用数学语言表达这种规律,初步提炼规律。
三、调动学生已有知识的经验,注意数学学习方法的迁移和渗透。
教学中注意沟通知识间的联系。在教学完加法交换律时,我及时把新学的知识和一年级学的凑十法以及加法计算的验算结合起来,让学生回忆交换加数验算的方法,明确与加法交换律加法结合律之间的联系。这样引导学生把新旧知识及时沟通,加深了对已有知识经验的认识,同时加深了对新知的理解。
本节课的教学,应该说学生经历了探索、发现、反思的过程,对加法交换律和加法结合律有了充分的认识和自己的理解。在教学的过程中仍存在着诸多的不足之处:学生初次用自己的语言描述加法交换律和结合律比较困难,出现表达不够严谨或不会表达的现象,这时我没有及时补救这种生成问题。课堂语言不够精炼,重复啰嗦;关于两种运算定律的特点,虽然在教学中让学生进行了观察和描述,在学完两种运算定律后,应给学生足够的时间练习巩固,在探索加法结合律的过程中应该再放开一些,引导学生观察、比较和分析,加深学生的理性认识,促进学生思维灵活性的发展。
第15篇:运算定律教学反思
整数乘法运算定律推广到分数乘法是在学生已经掌握了分数乘法计算、整数乘法运算定律的基础上进行教学的。面对新的课程改革,教师首先应该改变教学的行为,即把对新课程的理解转化为自觉的教学行动。这就要求教师在教学行为的层面上,呈现出新课程的所蕴涵的新的教育理念和新的教学方式。在教学“整数乘法运算定律推广到分数乘法”这一课后,反思这节课中存在的问题,应该从以下几方面改进:
1、树立学生自信心,尤其爱护后进生,培养学生口算心算、勤动手勤动脑的习惯。并对学生的多样思维应加大评价力度。评价一个孩子,要适时,适当,决不能敷衍,更不能抹杀,否则可能会压制孩子的思维积极性。这一点,在今后的教学中,我还要继续加强。
2、课前对学生学习效果估计不足,所以使一些事先设计好的练习没来得及做完。这也提醒我,备课,不仅要备教材,备教案,更重要的还是要备好学生,这是上好一堂课的关键。
3、上课时复习的时候应该安排一些整数乘法简便运算的题目,帮助学生回忆简便运算,为本课的简便运算打好基础。
4、例题6中本来只有前面2道题,但是备课时拔高了难度,多加了2道较难的简便运算题目,在前面复习时没让学生回忆、做做类似的整数乘法混合运算题,所以学生做题效果不理想。
总之,通过本节课,使我在教育教学理念上有了很大的转变和提高。我认为,在落实新课改的精神上,只有做到了让教为学服务,让学生充分从事数学活动,提供学生自主探索、合作交流的机会,提高他们的思维,培养他们的创新能力,才能真正提高教学质量。