小数乘小数教学反思

句文网    发表于:2024-01-09 09:34:54

第1篇:小数乘小数教学反思

小数乘小数这节教学内容,是在同学们已经学习了小数乘整数的基础上进行教学的,因此,学生学习小数乘小数的计算方法显得极为轻松,他们知道小数乘整数的计算方法是先把小数看成整数与整数相乘,然后看乘数中的小数是几位小数,结果就有几位小数。在教学小数乘小数的计算方法时,我是先引导学生复习小数乘整数的`计算方法,以旧引新,让学生逐步过渡到小数乘小数的学习。

进入新课,我给学生准备了我的房间和阳台的平面图,然后提出问题:房间的面积是多少?阳台的面积是多少?从而进入小数乘小数的学习。在引导学生探索小数乘小数的计算方法时,我是先让学生估算房间的面积大约是多少,通过估算后,让学生知道房间的面积的大概数,再引导学生将小数乘整数的计算方法迁移到小数乘小数的学习中来,分别把两个因数看成整数,把4.2看成42时扩大了10倍,把3.8看成38时扩大了10倍,算出的积就扩大了100倍,要使4.2×3.8的积不变,就要把42×38的积缩小100倍。教学3.8×1.35时,列竖式计算通常把数值多的因数写在前面,这样计算起来较为简便。

在计算时先把这两个因数看成整数与整数相乘,把1.35看成135时扩大了100倍,把3.8看成38时扩大了10倍,结果就扩大了1000倍,引导学生分别把两题计算好以后,再引导学生观察得数的小数位数与因数的位数有什么关系。让他们发现因数中一共有几位小数和结果中的小数位数相等,最后,点几名同学,让他们尝试说出小数乘小数的计算方法:先把小数乘小数看成整数与整数相乘,然后看乘数中一共有几位小数,就在结果上从右向左数几位点小数点。

第2篇:小数乘小数教学反思

小数乘小数的计算方法,教参与教材是这样归纳的,先按照整数乘法计算,看因数一共有同位小数,再从积的右边起数出几位,点上小数点,当位数不够时,要添“0”补足,《小数乘小数》教学反思。其实质就是根据积的变化规律而归纳而成的。

首先,通过复习小数乘整数的方法,让学生小结出小数乘整数的方法其实就是利用了积的变化规律,如2.05x4的计算方法,把它们看成整数的乘法计算,然后看2.05有两位小数,积就要点上两位小数。想一想、议一议1.2x0.8那怎么计算呢?

学生掌握了小数乘整数的计算方法后,通过议一议、说一说在小组交流中大多数会利用积的变化规律进行推导,把1.2x0.8的因数1.2和0.8分别扩大10倍算出积是96,要使积不变,积就要缩小到96的1/100,所以1.2x0.8=0.96.在这个环节,学生初步感知了积的小数数位和因数的小数数位的关系,因数共有几位小数,积就要从右到左点上几位小数,教学反思《《小数乘小数》教学反思》。

接下来,我出示两道计算6.7x0.3和0.56x0.04,让学生在利用0.8x1.2所得的方法进行计算,然后排列出0.8x1.2因数一共有位小数,积0.96也是两位小数,6.7x0.3中因数一共有两位小数,积也有两位小数,0.56x0.04因数一共有四位小数,积也有四位小数,从而在这些例子当中让学生进一步感受到了积的因数的小数位数的关系,进而学生很自然的就归纳出,小数乘小数的`计算方法,先按照整数乘法计算,看因数一共有同位小数,再从积的右边起数出几位,点上小数点,当位数不够时,要添“0”补足。

在知识的巩固过程中,突出竖式计算的书写格式,强调在计算时简要的说出计算的算理,如计算0.29x0.07时,要求学生不但要按书写格式书写,而且要求学生说出 0.29x0.07,先29x7计算出积,再看因数一共有四位小数,就从积的右边起点上四位小数,位数不够的添“0”补足。

在整节课的学习中,学生开始对学习充满兴趣,积极的思考,运用发现的规律去解决问题,能正确计算小数乘整数,效果还是比较好的!

第3篇:小数乘小数教学反思

教材分析

本节课是学习小数乘小数的计算方法,它是在已学的整数乘法和小数和整数相乘的基础上进行教学的,其教学生长点是整数乘法。它既是小数除法学习的基础,与是小数四则混合运算和分数小数四则混合运算学习的基础。然而,按整数乘法相乘后怎样得到原来的积,则是需要经历一个严密的推理过程,教材安排两次探究活动;

第一次在例1,思考虚线框里三个箭头以及上面的“×10”“÷100”的意思,扶着学生经历推理过程;

第二次在“试一试”,让学生在三个箭头上面的括号里填数,并写出左边竖式的积,独立进行推理。在两次探究后比较各题中两个因数与积的小数位数,发现“两个因数一共有几位小数,积就有几位小数”这一规律,在理解算理的基础上得出在积里点小数点的操作方法。同时通过归纳推理的方式总结出小数乘法的计算方法。

学情分析

本班有51名学生,其中男的有27人,女的有24人。从上学期的期末检测来看,大部分学生基础知识掌握得比较好,但也有10位同学基础比较差,最简单的整数乘法都不会计算。另外学生的自主学习能力一般,有合作学习的习惯。同时,在学习小数乘小数之前,学生们已经学习了整数乘法和小数与整数相乘,这对学习小数乘小数已有了些基础,现在来学小数乘小数应该一不很难。

教学目标

1、让学生通过自主探索,理解并掌握小数乘小数的.计算方法,能正确地进行相关的计算。

2、 让学生在探索计算方法的过程中进一步增强探索数学知识的能力。培养学生的推理能力和概括能力。

3、 让学生进一步体会知识之间的内在联系,感受数学知识和方法的应用价值,激发学习数学的兴趣,增强学好数学的信心。

教学重点和难点

本节课的教学重点是让学生通过主动探索,理解并掌握小数乘小数的计算方法。难点是理解把小数乘法转化成整数乘法后确定积的小数点位置的道理。

第4篇:小数乘小数教学反思

小数乘法已经进行了两节课,现在讲一下讲完两节课的感受。

整节课还是我主导的多,学生主动发现的少,是我太心急了。工作一年,反而不知道该怎么样讲课了。

小数乘法先让学生回顾了小数乘整数,回顾买3个水杯多少钱?

学生口算3.2×3=9.6。

然后提出问题:爸爸又想买草莓,根据图片你能得到哪些信息?

学生知道单价乘数量就是总价。

列式为9.9×0.4,首先进行估算,需要的钱少于4元。然后进行精确的竖式计算。这是本节课的重难点。

学生对于计算过程也会理解。

但是,真正在交上来的作业过程中,却漏洞百出,让我的内心甚是惶恐。

作业主要出现的问题是:

1.小数乘小数的竖式出现错误:0参与运算过程当中。

2.竖式当中末尾不划0。

3.小数点直接下拉到竖式中或者计算原理不清楚。

上式中,第一幅图片10.5=2.1×5。

第二幅图片0.86=0.43×0.2,0.43=0.43×1。

第三幅图片10.5=2.1×5,6.3=2.1×3,第一位因数按小数计算,第二位因数分别按整数计算。

4.一种新的计算方法在学生当中出现。懂原理,但是不会写简便形式。

上式中0.0190=0.38×0.05,0.076=0.38×0.2。

该如何纠正学生的错误呢?下面是预设的解决办法。

假设一:学生不懂原理。该如何解决。

具体方法:说过程。

先出示几道错题,让学生感受下混乱的竖式能计算出正确的.结果吗?

学生自己解决,老师引导。

小数直接参与到计算过程当中。

假设二:学生已经懂原理,但不会写正确的计算过程。【老师直接指导】

具体方法:课堂上集中解决。写出几种错误形式供学生参考。

多余的计算:000。

计算过程中不得随意改变数的大小。

实施效果:再次对交上来的作业,学生的格式情况良好,除个别学生需要再辅导外,基本上都能写出正确的小数乘法竖式。

第5篇:小数乘小数教学反思

在学习了旧知小数乘整数的基础上,本课意见通过学生的自主探索与发现解决以下几个数学问题:

1、理解并掌握小数乘小数的计算方法,并能正确计算。

2、在探索计算方法的过程中,培养初步的推理能力及抽象概括能力。

3、进一步体会数学知识之间的内在联系,感受数学探索活动本身的乐趣,增强学好数学的信心。

本节课的'教学重在渗透比较的思想,在比较中找出新知旧知的联系,在比较中找到解决问题的策略,在比较中发现小数乘小数算理、归纳计算方法。

1、在求阳台面积与房间面积比较时,进行了知识迁移,让学生比较这两道算式的异同,以及与小数乘整数的异同,从而得出小数乘小数的计算法则:计算过程按整数乘法计算。因数中一共有几位小数,积就从右往左数几位,点上小数点。

2、求总面积两道算式的比较,引出把整幅图看成一个大的长方形进行计算比较简便。

通过学生的当堂作业反馈发现学生在计算小数乘小数时基本能正确在积中点出相应的数位。少数错因在于乘法计算不过关。因此学生的乘法计算还是要过关。另外,相关的变式练习还是要多多训练。学生的倒退意识不强。比如在给248×35=8.68的因数点小数点时,学生们注重表面现象——积是两位小数,忽视了积末尾隐藏的0,也就是说,实际上积应该是三位小数,只是小数末尾的0划去了。所以,学生在掌握了基本算法之后,教师还要有意识地培养学生的观察与审题能力,有效发现题目的深层意图,避免掉入小陷井。

第6篇:小数乘小数教学反思

本节课的内容基于整数乘法上,而进行有关计算的课程,我按以下步骤进行教学。

一、深刻把握教学内容,知道教学设计

教材并没有归纳小数乘小数的法则,参考人教版这样归纳:先按照整数乘法,计算看因数中一共有几位小数,再从积的右边筛骨出几位,点小数点。在教学中,还有学生根据前面的小数乘整数的计算方法迁移归纳成:看因数中一共有几位小数,积就是几位小数。向学生指出,如果积是未化简的情况,这个方法可以使用。因此,本课的重点和难点都应当在于帮助学生发现和掌握。因数中小数位数变化引起积中小数位数变化的'规律,形成比较简单的确定积的小数的位置的方法。关键在于适当弱化积的计算过程,突出寻找积的小数位数与因数的小数位数的关系,避免学生出现计算枯燥无味的感觉。

教学方法上,更多地可以依赖知识的结构间的迁移类推,让学生自主发现归纳饿掌握。

二、创设有效的问题情境,促进算理形成

首先复习铺垫,沟通联系,由36×28=1008,3.6×28,让学生观察,题目是怎样变化的?那么积的小数点应点在哪里?

最后总结一句口诀:

一算、二数、三点点。

最后是自主实践,先由一两个错题,通过让学生找错,说理由,进一步深化理解。

总之这节课我紧紧抓住积的变化规律来引导学生理解确定积的小数的位置的方法,关注了学生思维的有效生长。

第7篇:小数乘小数教学反思

小数乘小数是本单元的一个教学重点,它是在学生学习了小数乘整数的基础上进行教学的。我以为这一知识学生已有了一定的基础,只要重点掌握了小数乘法的算理,学起来应该是比较轻松的,可事实的情况大大出乎我的意料。由于对难点问题积的小数点的位置处理得不到位,所以在课后练习中,学生出现错误的现象比较多:

1、方法上的错误:1.2×0。8时,学生能流利的说出先将两个因数分别扩大10倍,这样乘得的积就会扩大100倍,为了使积不变,最后还要将积缩小100倍;但是在计算的过程中,学生不能将算理与方法结合起来,不能正确地解决积的小数点的问题。

2、计算中关于0的问题;部分学生在积的末尾有零时,先划去0再点小数点;部分学困生在遇到因数是纯小数或因数中间有0时,还要将0再乘一遍。

3、计算上的失误:因数的数位较多时,个别学生直接写出得数(如2.15×2。1的竖式下直接写出4.515,没有计算的过程),做完竖式,不写横式的得数等。

面对学生出现的这样那样的错误,使我不得不开始重新审视自己的课堂,审视自己的教学,并对此我进行了深刻的反思:的确,说算理对于学生计算方法的掌握,逻辑思维能力的培养具有积极的作用。然而搞形式化说理,忽视学生对算理的感悟,则有害而无益,形式化说理,表面上看似乎有理有据,推理严密,但它不是建立在学生对计算过程和方法感悟的基础上,因而难以使学生对算理真正内化,难以使学生理解实现对所学知识的“意义建构”。新课标指出:学生的.数学学习基础是生活经验。虽然,教材中的例题也来源于生活实际,但是离学生的生活经验还是比较远的。如果能够找出生活中的实例,让学生说出变化规律,效果会更好。因此教学中要准确把握学生的学习状况,真正做到因材施教,小数乘法计算方法的依据因数变化与积的变化规律,应该放手让学生通过独立思考或小组合作学习的形式,自己举例子说明积的变化规律,这样获得的积的小数点与因数的小数点的关系才是主动的。在讲算理的同时,重视计算技能的培养,细化类型,使各个层次的学生都能正确的理解和掌握计算的方法,做到既重视教学过程又重视教学结果;既注重新旧知识的联系、讲清算理,又要突出积的变化规律、突出竖式的书写格式、突出因数中小数的位数与积中小数的位数的关系。这样才能切实的提高课堂教学的效率。

第8篇:小数乘小数教学反思

小数乘小数的计算方法,教参与教材是这样归纳的,先按照整数乘法计算,看因数一共有同位小数,再从积的右边起数出几位,点上小数点,当位数不够时,要添“0”补足。而在实际的教学当中,有大部分的学生根据前面的小数乘整数的计算方法迁移归纳出以下的内容:看因数一共有几位小数,积就是几位小数。其实这两种方法都是一致的,其实质就是根据积的变化规律而归纳面成的。因而我本课的重点分为以下三点进行。

一、知识的迁移过程。

通过复习小数乘整数的方法,让学生小结出小数乘整数的方法其实就是利用了积的变化规律,如2.05*4的计算方法,把它们看成整数的乘法计算,然后看2.05有两位小数,积就要点上两位小数。想一想、议一议1.2*0.8那怎么计算呢?

学生掌握了小数乘整数的计算方法后,通过议一议、说一说在小组交流中大多数会利用积的变化规律进行推导,把1.2*0.8的因数1.2和0.8分别扩大10倍算出积是96,要使积不变,积就要缩小到96的1/100,所以1.2*0.8=0.96.在这个环节,学生初步感知了积的小数数位和因数的小数数位的关系,因数共有几位小数,积就要从右到左点上几位小数。

二、知识的归纲过程

我们知道,当一个知识点刚刚有一个兴奋的苗头的时候,教师如果就顺着这个苗头直接就说出结果的话,那效果可能不明显,因为这个时候学生还没有把概念真正形成,因为他们只是通过一道0.8*1.2得出一个较为浅显的`表象,因而我这里是这样处理这个环节的,我不急着去归纳,而是出示两道计算6.7*0.3和0.56*0.04,让学生在利用0.8*1.2所得的方法进行计算,然后排列出0.8*1.2因数一共有位小数,积0.96也是两位小数,6.7*0.3中因数一共有两位小数,积也有两位小数,0.56*0.04因数一共有四位小数,积也有四位小数,从而在这些例子当中让学生进一步感受到了积的因数的小数位数的关系,进而学生很自然的就归纳出,小数乘小数的计算方法,先按照整数乘法计算,看因数一共有同位小数,再从积的右边起数出几位,点上小数点,当位数不够时,要添“0”补足。

三、知识的巩固过程

1、突出竖式计算的书写格式,强调在计算时简要的说出计算的算理,如计算0.29*0.07时,要求学生不但要按书写格式书写,而且要求学生说出0.29*0.07,先29*7计算出积,再看因数一共有四位小数,就从积的右边起点上四位小数,位数不够的添“0”补足。

2、突出口算为小数乘法简便运算打基础。

如在课堂上布置了0.25*4、0.125*0.8、0.25*40、12.5*8、1。25*8等多种常用的、常见的口算,这样不但进一步加深了小数乘小数的计算方法,而且为小数乘法的简便运算作了一个很好的铺垫。

在整节课的学习中,学生开始对学习充满兴趣,积极的思考,运用发现的规律去解决问题,能正确计算小数乘小数,效果还是比较好的!

第9篇:小数乘小数教学反思

《小数的产生和意义》是人教版四年级下册《数学》教材第四单元第一课时的内容。在教学这一内容时,我运用“数形结合”的思想,进行了两次不同的尝试教学:

第一次教学:“小数的意义”这部分内容我是这样来处理的:借助课件直观形象的优势,让学生在想象、类推中理解“小数的意义”。教学过程如下:

课件演示:把1米平均分成10份。让学生观察后思考:把1米平均分成10份,每份是多少分米?如果用米作单位写成分数是多少米?写成小数是多少米?学生回答后追问:这样的3份或7份用分数和小数又怎样表示呢?……学生借助课件写出相应的分数和小数后,引导他们观察板书归纳出“一位小数”的概念。在“两位小数、三位小数”的意义也采用这个方法,让学生在推理、想象中探究。为了让学生更清楚地看到把1米平均分成100份,每份是1厘米,我利用多媒体课件把1厘米放大。然而课件展示1厘米的长度和1分米的长度差不多。给学生一定的误导。结果是:0。1米、0。01米、0。001米的实际长度是多少?学生头脑中一点印象也没有。以至于在后面学习小数的“计数单位”时感到很空洞,他们不知道“计数单位”是指什么?为什么要以0。1、0。01、0。001……作为小数的计数单位?

反思教学上述教学,存在着这样几个问题:其一、没有帮助学生在头脑中建立0。1米、0。01米、0。001米……具体表象。学生以课件为支撑,借助想象去推理。由于缺乏操作体验的过程,学生头脑中的0。1米、0。01米、0。001只是几个概念而已,至于0。1米、0。01米、0。001米……实际长度是多少?头脑中没有印象。这样抽象与表象之间缺乏应有沟通,影响了后面“小数计数单位”的教学。第二学生对小数的计数单位缺乏体验的过程。教学中没有设计用0。1、0。01、0。001……等为计数单位来找小数的体验过程。其三、课件的误导。课件出示1分米、1厘米的放大图,展示给学生的1厘米、1毫米与实际长度相差甚远。反而对学生产生的误导:认为1厘米与1分米的长度相等。

针对上述问题我进行了如下的修改:第一、在运用多媒体课件的同时,加强学生的操作体验。如教学110米就是0。1米时,增加了在直尺上任意找0。1米的活动。让学生知道这个0。1米是指十份当中的任何一份,而不是单指0—1之间的这一份。同时让学生围绕“0。1米”这个基本的计数单位在直尺上找小数的过程:如在米尺上找出0。3米,说一说你是怎样找出0。3米的?0。3米是几分之几米?0。3米里面有几个0。1米。或在米尺上找出7个0。1米,想一想用小数表示是多少米?用分数表示又是多少米?……让学生在“找”“说”的活动中,把0。1米的实际表象深深印在脑海里,同时也感悟到一位小数都是由几个0。1组成的,1米里面有10个0。1米。0。1是一位小数的`计数单位。第二、为了防止放大图给学生的误导,在出示课件后安排了让学生在直尺上找1厘米、1毫米的活动。让他们在头脑中建立1厘米、1毫米正确的表象。

按照上述两个教学环节的设计,我进行了第二次试教。教学中我发现:“学生在直尺上找0。1米”时思维非常活跃,主要体现在以下几个方面:一是:在直尺上找0。1米时,学生欣喜地发现:把1米平均分成10份,0。1米不仅仅是指0—1之间的长度,8—9之间的长度是1米的110也是0。1米。“不同的位置为什么表示的长度都是0。1米?”学生面带疑惑。经过观察、比较、讨论学生明白了:原来它们都是指十份当中的任何一份。他们还发现:1米里面竟然有10个0。1米……学生在“找0。1米”的过程中,“0。1米”的实际大小已经深深地印入了脑海。同时学生对“0。1”是一位小数的计数单位也有了一定的体验和理解。这个过程正是他们自我吸收、内化新知过程,它较好地体现了数形结合的思想,培养了学生思维的深刻性。二是:提问“暗示”培养对应思维、可逆思维。小数实质上是十进制分数的另一种表示形式。教学中我采用提问来“暗示”来突破这一难点,提问时围绕“0。1米”这个基本的计数单位来设计问题:如在米尺上找出0。3米,说一说0。3米是几分之几米?0。3米里面有几个0。1米。这个问题意在以0。1米为基本的计数单位,在直尺上找到0。3米,然后根据小数0。3米找到相应的分数。又如在米尺上找出7个0。1米,想一想用小数表示是多少米?用分数表示又是多少米?此问意在让学生以0。1米为基本的计数单位找出0。7米后,找到与之对应的分数。并同时渗透0。7米里面有7个0。1米。这样一正一反的提问,让学生能意识到小数实质上是十进制的分数。有效培养他们的对应思维、可逆思维。

教学实践证明:在教学中运用数形结合,能激发学生学习数学的兴趣,增强学生的求新、求异意识。符合儿童的认知规律,是提升学生思维的必由之路。

第10篇:小数乘小数教学反思

新课程标准提倡数学生活化。对此的片面理解就是数学知识要和生活联系。于是,摒弃了课本中的例题,以为创设了生活情境就是新理念。再加上设计时,只考虑到了:例题中的3。6×2。8和2。8×1。15要体现小数乘法的两种情况,我在设计例题时以超市购物为例,刚开始在设计时有些数据太大了,没考虑到实际作用,幸好后来得到了及时的改正。

这节课设计的意图是力求让学生通过“探索”,自主地发现规律。我们的'学生已经习惯了回答“是不是?”“对不对?”之类对思维很低要求的问题,一旦遇到“说说你是怎么想的?”“这些算式有什么共同的规律呢?”一类需要将他们的思维过程充分展示出来的问题,就显得手足无措了。

教材中没有安排小数乘整数的口算,而实际在口算中由于数目比较小,计算结果可以比较快速的反馈,易于检验学生计算的正确与否,同时可以帮助学生理清计算小数乘整数的计算思路,所以在计算中我增加了小数乘整数的口算练习,让学生说出自己的想法,同时用小数乘整数的意义检验方法的正确性,让所有的学生都知道计算小数乘整数可以看成整数的计算。

我想我现在的立足点就是在日后的家常课中,一点一滴的拾起,新理念,新课堂,希望自己在不断的反思中一路走好。

第11篇:小数乘小数教学反思

一、我的主导性太强,在学生做题中出现错误时,我总是急于给学生分析做错的情况,而没有让学生自己找找原因。如果让他们先想想小数乘法的法则,然后再跟错题比较一下,这时候有的同学可能自己找出错题的原因,这样才能给学生留下深刻的印象,以至下次做题时不会再犯相同的错误。或者还可以把学生所有的错题的形式集合在一起,让学生自己“会诊”,找出错因。

二、新授前相关复习不够到位对于学生的学习起点没有一个正确的认识,在学生的基础掌握不好的情况下,就应该先为学生作好铺垫,提前让学生作好整数乘法和小数初步认识的'复习,而不应该急于按教学计划开课。如果在开始教学新知识时就把好计算关,给学生夯实基础的话,就不致于出现正确率较低的现象。

三、重点放在学生理解算理,能用自己的话说出如何确定小数点的位置,对于小数点的移动引起小数大小的变化,有必要进行复习,渗透转化思想,启发学生自己解决问题。

第12篇:小数乘小数教学反思

小数乘小数的计算方法,教材这样归纳:先按照整数乘法计算,看因数中一共有几位小数,再从积的右起数出几位,点上小数点。在实际教学中,有学生根据前面小数乘整数的计算方法迁移归纳成:看因数中一共有几位小数,积(指未化简的)就是几位小数。这两种说法实际上是一致的,都可从由积的变化规律中得出,因此,本课的重点和难点都应当在于帮助学生发现和掌握因数中小数位数变化引起积中小数位数变化的规律,形成比较简单的确定积的小数点位置的方法。

关键在于适当弱化积的计算过程,突出寻找积的小数位数与因数的小数位数的关系,以保证学生思推的高效性,也免计算时的枯燥无味的感觉。而教法上更多地可以依知识的`生长结构近移类推,让学生自主发现、归纳和掌握。

小数乘小数是第一单元的一个教学重点,它是学生在学习了小数乘整数的基础上进行教学的。我以为这一知识学生已有了一定的基础,只要重点掌握了小数乘法的算理,学起来应该是比较轻松的,可事实大大出乎我的意料。

由于对难点问题——积的小数点的位置处理得不到位,所以在课后练习中,学生出现错误的现象比较多:1.方法上的错误。例如在教学例3(2.4×0.8)时,学生能流利地说出先将两个因数分别乘10.这样积想当于来100,为了使积不变,最后还要将积除以100;但是在计算的过程中,学生不能将算理与方法结合起来,不能正确地解决积的小数点的问题,2.计算上的失误。(1)部分学生在积的末尾有0时,先画去0再点小数点;部分学生在遇到因数是纯小数或因数中间有0时,还要将0再乘一遍。(2)因数的数位较多时,个别学生直接写出得数(如4.8×0.24的竖式下直接写出152,没有计算的过程),做完竖式,不写横式的数等,面对学生出现的这样那样的错误,我不得不重新开始审自已的课堂,审视自已的教学,并对此进行了深刻的反思。

第13篇:小数乘小数教学反思

五年级的学生已经具备了一定的分析判断的能力,对身边与数学有关的事物有较强的好奇心和探索精神,我抓住他们这一特点,在学习过程中,多采取小组合作探究的教学方法,充分体现学生的学习积极性和主动性,极大地激发了学生的学习热情。

在进行“验算”环节,首先让学生判断例题中计算的对与错,再说出自己的理由,鼓励他们大胆思考,然后小组合作讨论,激发有创新的思路。经过交流讨论,同学们有的根据条件来说“鸵鸟的速度是非洲野狗的1.3倍,所以鸵鸟的速度应该快,而不是比56小!”说得极有道理,这是上节课中的一个重要知识点,加入了自己的.理解,还有学生补充道:“56乘1.3的积应该比56大,因为一个非0的数乘大于1的数,积比原来的数大!”教材上也有,但这样的解释更清查明了!更有学生利用上节课“因数与积的小数数位间的关系来解释”,超越教材!

在整节课的学习中,学生能积极的思考,运用发现的规律去解决问题,效果还是比较好的!不足之处在于个别学生在形成技能环节,还需要多练习,还有待提高。

第14篇:小数乘小数教学反思

《小数的意义》是小学数学第八册第四单元的起始课,也是本单元的一个教学重点。小数的意义这部分知识是小数后续知识的基础,因此学好小数的意义,真正理解小数的意义是十分重要的。

小数的意义是在学生学习了分数的初步认识之后才学习的,所以在设计本节课的教学时,我注重抓住了分数与小数之间的密切联系,如:通过学生对十进分数的认识来引导他们学习和理解小数的意义。以此作为学生认知的桥梁,我认为更易于学生对新知识的理解和掌握。

在认真钻研教材的基础上,我把本课的教学目标最终定位在四点上:

1、在生活情景中,了解小数的.产生,体会数学与人类社会的密切联系,了解数学的应用价值。

2、学会和他人合作,能较清楚地表达和交流解决问题的过程。

3、通过小数的运用,激发学生对小数的学习兴趣。

4、通过学习,让学生正确理解小数的意义,并认识小数的计数单位。这是我在课前预想达到的教学效果。

在讲完这节课后,我认为自己成功之处有以下几点:

(1)本节课的开始,我让学生带着问题动手操作——测量橡皮的实际长度,然后去发现误差。这个环节的设计,既发挥了学生的主体性,又发展了学生发现问题、获取数学知识的能力。在整个教学过程中,我尽可能地调动每个学生的学习积极性,给他们以展示自己的机会。在这节课上,91%的学生都在课上积极发言了,只有3人一个问题也没有回答过。

(2)教学中,我能抓住分数和小数二者之间的内在联系,通过让学生观察、分析、比较,发现了小数的本质特征。这样,不但注重了学生探究能力的培养,而且也有利于学生良好认知结构的形成。

(3)在教学过程中,我还注重联系学生生活实际,善于抓住新旧知识的衔接点,能启发学生运用类推迁移的方法去学习。能将老师的讲解、学生的思考和适当的练习有机地结合在一起,取得了较好的教学效果。通过这样的学习,学生切实感受到了“生活处处有数学”、“学习数学很有用”,从而大大激发了学生学习数学的兴趣。

此外,我在讲授这节课的同时,还对班中的学生进行了前测和后测。测试后的结果还是比较令我满意的。如:在测试中有这样一个问题:“你会读下列小数吗?0.2、0.78、0.514”。前测中,有14人会读,有14人会读1、2个,还有8人根本不会读。而讲课之后,在后测中37人都已会读。“你知道小数的组成吗?”这个问题在前测中只有2人知道,17人不全知道,还有17人不知道。而学习完本课之后,全班有33人都知道了,只剩4人不全知道。

第15篇:小数乘小数教学反思

1、要处理好怎样点小数点。

在教学时,先让学生回顾整数乘整数的方法,然后在此基础上,扩展到小数乘小数,把小数也看成是整数,这样每位学生都会做整数乘法,最后,在指导学生在积上应怎样点小数点,这是关键,也是教学难点,要强调整个一道乘法算式中共有几位小数,在积中就点几位小数。其中的道理也要让学生明确,把小数看成整数,是先扩大几倍,最后也要缩小相同的倍数,所以要在积中点几位小数。但在学生实际练习中,我也发现了有一小部分学生小数点仍点错,究其原因,不难发现学生不会数小数点,他们把小数的乘法与加法混淆在一起,因此,对这些学生再复习一下小数加法的方法。这样,每位学生都会点小数点了。

2、在教小数乘法中要结合生活实际创设情境,解决实际问题。

力求让学生通过“探索”,自主地发现规律。教师再作适当的`指导。我想我现在的立足点就是在日后的家常课中,一点一滴的拾起,新理念,新课堂,希望自己在不断的反思中一路走好。

更多相关内容: