第1篇:一次函数图像教学反思
一堂好的数学课常常是由好的数学问题启发并激励学生学习的充实过程。因此,我把教学设计的主体“解决问题,总结性质”设计成由若干个有一定逻辑顺序的问题,并由这些问题组织师生的教学活动。那么,怎样设计好的问题呢?我认为,在完成教学任务并实现教学目的的“作用点”上,在知识形成过程的“关键点”上,在运用数学思想方法产生解决问题策略的“关节点”上,在数学知识之间联系的“联结点”上,在数学问题变式的“发散点”上,在学生思维的“最近发展区”内,提出恰当的、对学生数学思维有适度启发的问题就是好问题,这也是问题设计的基本原则。例如:本课在一开始就创设问题情境,引导学生思考,引入课题。给出几个一次函数的图像,让同学们合作学习进行探索一次函数的性质。又如,画一次函数图象只需描出图象上的“任意两点”的`结论后,提问学生“你取的是哪两点”,找了四个同学回答出各自的两个点,既让学生知道如何去找图象上的两个点,也使学生理解了刚刚得出的结论。
适当地提出好问题,不仅可以引导学生的思考和探索活动,使他们经历观察实验、猜测发现、推理论证、交流反思等理性思维的基本过程,而且还给了学生提问的示范,使他们领悟发现和提出问题的艺术,引导他们更加主动、有兴趣地学,富有探索地学,逐步培养学生的问题意识,孕育创新精神。而“兴趣是最好的老师”,有良好的兴趣就有良好的学习动机,但不是每个学生都具有良好的学习数学的兴趣。“好奇”是学生的天性,他们对新颖的事物、知道而没有见过的事物都感兴趣,要激发学生的学习数学的积极性,就必须满足他们这些需求。
探索一次函数的性质时,给出几个关联问题,
问题1:既然一次函数y=kx+b(k不为零)的图象是一条直线,那么作图时,至少要取几个点就可以了?取哪一些点比较简单,有代表性?
问题2:在前面的直角坐标系中作一次函数y=2x—1,y=2x,y=—1/2x的图象,并观察四条直线的位置关系。
问题3:正比例函数y=kx(k不为零)是一次函数吗?作图时需要几个点?每一个正比例函数一定能通过哪一个点?
设置的问题由浅入深,使得学生能进行理性的思考,并提升他们思维的深度。
学生是学习的主人。新课标强调,让学生在自主探索与合作交流中学会学习,提高数学素养。本节课充分体现了这一理念,学生有足够的自主探索时间,有与同学合作互动的空间,有与老师交流表达的机会。学生不是从老师那里获取知识,而是在数学活动的过程中发现规律、体验成功。
教师是课堂的主导。教师是学生数学学习的组织者、引导者和合作者。然而,组织、引导本身就强调了教师必须是一个特殊的“合作者”,而不是撒手不管的“非主导者”。教师的主导作用不是体现在“主宰”课堂,而应体现在为学生提供鲜活的学习素材,体现在对学习团体的严密组织,体现在对交流活动的精心策划,体现在处理反馈信息的及时有效。这不仅需要教师透彻领会教材实质,更需要教师准确把握学生个性。试想本节课,如果教师不是真正了解学生,就不能组成协调高效的学习小组,也不能在有限的时间内完成教学任务。
第2篇:一次函数图像教学反思
在今天的数学课上,我把每组的两三位学生叫到了黑板上,把前两节课学过的一次函数图像的大致画法画出来,但出乎我的预料之外的是没有一个可以完整的画得出来。我有点想不通,简简单单的k大于0上坡型,k小于0下坡型,b大于0往上平移,交y轴于正半轴,b等于0图像必过原点,b小于0往下平移交y轴于负半轴,这样的几句话都记不了。是不是我的教学有问题?还是学生上课时并不是用心来听课?不过我今天叫的这些学生上课时发呆、讲话,课外时间又没有好好的复习是他们的通病。虽然课堂是我讲话有点大声,但我并没有什么恶意,其他同学发出的笑声也不是讽刺,我们只是希望你能端正学习态度,讲究学习方法,迸发出学习的热情,一起加油,不要让全班失望,让065班的整体成绩能有所提高。
当然除了学习上令老师担忧之外,在纪律上也令老师头痛。抽烟、喝酒、写情书谈恋爱、威胁同学请客、穿奇装异服等。老师知道现在的中学生追求个性,张扬个性,这没有什么错。步入青春期,对异性产生了好感,也是本能,但越过了警戒线就不应该了。你们知道没有,你们来到学校的主要任务是什么?是学习以后为自己终身服务的科学文化知识。怎么还心思去想别的事情呢?
在这里,我要把下面这些良言送给你们,送给所有我的.学生:
1、年轻人犯错误,上帝都可以原谅,何况是一个普通的老师。但请你记住:上帝能够原谅的事,社会不一定会原谅;老师能够原谅的事,老板不一定会原谅。你将生活在现实而复杂的社会,而不是中学和天堂。
2、年轻就是资本,但年轻是学习知识和打拼事业的资本,而不是放纵自己和庸碌生活的理由。请你记住:不要以为年轻就一切还来得及,来不及的不是年龄而是在岁月流逝中所积累或错过的一切。
3、“勿以善小而不为,勿以恶小而为之。”人的品性和素质是一个长期养成的过程,而中学时的养成往往会影响你的一生。请你记住:上课说废话、发呆、搞小动作等的确不是什么大毛病,但如果养成一种习惯,就会决定你被社会“请出去”的命运。
4、尊重别人是一种美德,它会赢得认同、欣赏和合作。请你记住:不尊重朋友,你将失去快乐;不尊重同事,你将失去合作;不尊重领导,你将失去机会;不尊重长者,你将失去品格;不尊重自己,你将失去自我。
5、张扬个性表达自我是一种本能,挑战权威是一种勇气。但表达自我不能伤害别人,挑战权威不能破坏规则,除非你在进行革命。请你记住:不要试图用带有道德色彩的另类行为去赢得关注,也许在目光关注的背后是心底的离弃。
6、无知者无畏并不可怕,真正可怕的是无知者还无所谓。请你记住:不要用无所谓的态度原谅自己,对待一切,那会使一切变得对你无所谓,也会使你成为一个无所谓而又无所成的痛苦的边缘人。
说这些话,源于自责,更多的是一个老师的良知和认知,希望你们能够理解。
第3篇:一次函数图像教学反思
课程标准对这一节的要求:知识技能方面,理解直线y=kx+b与直线y=kx之间的位置关系;会画出一次函数的图象;掌握一次函数的性质。数学思考方面,通过一次函数图象归纳性质,体验数形结合法的应用;解决问题方面,通过一次函数图象和性质的研究,体会数形结合法在问题解决中的应用,并能运用性质、图象及数形结合法解决相关函数问题。情感态度方面,体会数与形的内在联系,感受函数图象的简洁美;在探究活动中渗透与他人交流、合作的意识和探究精神。本节课教学重点是:一次函数的图象和性质。难点是由一次函数的图象归纳得出一次函数的性质及对性质的理解。
本节课的设计思路是:通过6个活动,在复习正比例函数和一次函数的定义、正比例函数图象和性质的'基础上,在同一个直角坐标系中描出正比例函数y=-6x和一次函数y=-6x+5的图象,通过让学生观察比较去体验两者之间的位置关系,得出一次函数的图象是一条直线,并且函数y=kx+b的图象实际是直线y=kx上所有点进行了平移的结果。因为两点确定一条直线,通过活动3明白要做出一次函数的图像只需要选取图象和坐标轴的两个交点坐标就可以了。从而达到掌握一次函数图象的画法的目的。然后在同一直角坐标系中画出四个k和b取不同值的一次函数的图象,进一步巩固一次函数图象的画法,同时观察k和b的变化引起直线位置和变化趋势的变化,使得一次函数的性质这一教学重点自然浮出水面,水到渠成。再通过学生演板课后练习题,及时反馈教学效果,查缺补漏。设计一个思考题让学有余力的学生对常数b也有一个较为深入的认识。最后通过小结总结回顾学习内容养成整理知识的习惯。选作题设计目的是对作业进行分层要求,使“不同的学生在数学上得到不同的发展”。
成功之处:通过复习旧知,达到承上启下,引入新课之目的,教学内容的设计,由浅入深,循序渐进,通过学生自主学习,合作交流和教师的适度引导点拨,使学生达到“蹦一蹦能摘到桃子的效果”。一次函数K和b对图象、性质的影响。
第4篇:一次函数图像教学反思
一、总体概述:
《一次函数图像的性质》这节课主要是在学生熟练掌握一次函数图像画法的基础上,通过观察几组特殊函数图象的特点和函数表达式之间关系归纳总结出函数图像的一般规律。加深对图象表示的理解,进一步体会数形结合以及从特殊到一般的数学思想。
本节课的学习目标主要包括三部分内容:1.如果函数表达式中的k相同,那么他们的函数图像互相平行;2.将直线y=kx沿y轴向上平移b个单位,得到直线y=kx+b;沿y轴向下平移b个单位,得到直线y=kx-b;3.由k、b的正负号判断函数图像所经过的象限。本节课的难点是根据函数表达式中k和b的正负快速的画出图像的草图进而判断出图像所经过的象限。
二:教学流程
上课一开始我让学生自己先动手运用两点法画出y=-2x,y=-2x+3,y=-2x-4这三个函数的图像,接着让给学生观察这三个函数图象的位置关系以及函数表达式中的共同点,并用自己的语言总结;第二步,我以教鞭作为教具取一个固定的点在黑板上动态的演示出直线的上下平移,得出图像的平移与函数表达式之间的关系;再讲最后一个内容之前先让学生观察函数表达式中的b和图像与y轴的交点的纵坐标之间的关系,使学生了解表达式中的b就是图像与y轴的那个交点,从而得出当y>0时图像交与y轴的正半轴,当y<0时,图像交与y轴的负半轴,再结合k正负决定函数的增减性这个知识点,学会在没有要求的情况下大致的画出函数图象,进而判断出函数所经过的象限。
这节课基本脱离教材的束缚从学生的认知顺序出发,层层递进。在教学当中设计了多个学生自己思考的过程,给学生发表见解的机会,把课堂的大部分时间还给学生,教师做一个引导的作用让学生多思考,自己动手得到结论,让他们的印象更加深刻,在理解的基础上熟练掌握并运用结论。通过随后的提问、练习以及下课前得小测发现大部分学生都掌握的很好,基本完成了学习目标。
三:教学内容的处理。
在“ 一次函数的'图象”中有平移的问题,
1.(1)将直线y=3x向下平移2个单位,得到直线_____________________;
(2)将直线y=-x-5向上平移5个单位,得到直线_____________________.
与多位教师讨论后,我们用学案(下面的表)来处理,让学生更多一点感性认识,少一点理论上的结论. 2. “一次函数的性质”中无b对函数的图象的影响,但题中有,要补讲 环节二:概括一次函数图象的性质
一次函数y=kx+b有下列性质:
(1) 当k>0时,y随x的增大而______,这时函数的图象从左到右_____;
(2) 当k<0时,y随x的增大而______,这时函数的图象从左到右_____.
(3)当b>0时,这时函数的图象与y轴的交点在:
(4)当b>0时,这时函数的图象与y轴的交点在:
满意之笔
一、在本节课的引入部分采用班级里的真人真事(学生每天上学这一过程) “在过程
中涉及到哪些量?”“假定每位同学各自都是匀速直线运动的,那速度、时间、路程之间有什么关系?”“路程是时间的一次函数吗?”等过渡性的问题既复习回顾了上节课的知识又为一次函数图像的概念引出作了铺垫。
二、大胆对教材作大幅度调整、修改
①对知识内容的完整性作了补充。 一次函数的图象的知识要点:一次函数几何形状:一条直线;一次函数图象的画法;一次函数图象与坐标轴的交点坐标。教材对“一次函数图象的画法”阐释得不太完整、详尽。学习函数的图象需要培养学生数形结合的思想,一次函数图象又是所有函数图象中最简单的一种,是以后学习其他复杂函数的基础,所以整体全面地学习一次函数的图象能为学生以后学习其他复杂函数提供思路样本、节省学习时间。画出上述函数的图像。图像还是一条直线吗?此题为拓展知识点:当一次函数的自变量限制在某一范围时一次函数的图象是一条射线或线段而特地设计的。至于如何快速地画出射线或线段呢,让学生讨论后给出总结:
②对例题的处理:对例1作两处调整:一是对题目的设置,二是对题目的讲解次序。 为更好阐述当一次项的系数为分数或小数时,如何画一次函数的图象(自变量可取任何数),特在例1中添加了画(2) ,问学生取怎样的两个点使作图方便简洁,让学生自由发挥充分讨论后总结:一般取整数点。 在讲解次序上,先解决(1)(2)(3)小题的作图,归纳方法;再解决如何求(1)(2)(3)小题的函数图象与坐标轴的交点坐标,归纳拓展为一般情况:与y轴交点坐标(0,b) 与x轴的交点坐标
遗憾之处:
一、时间把握不准。由于我在原教材的基础上加宽了知识点的面,拓展了知识点的深度,个别环节还需要小组活动或学生个别上台动手操作,而我又想将这所有的内容在一节课内完成,似乎太高估了自己和学生的能力。所以我想这么多内容可以更宜分开两节课来上吧。
二、部分内容上处理出现失误:初探索一次函数y=x的画法时,我直接自己硬性规定先取这样五个点:(-2,-2), (-1,-1) , (0,0) , (1,1) , (2,2),而没有先征求学生的意见,看看他们是怎么取的,也没有解释为什么要取这五个点(理由应是:这五个点分布均匀,它们的坐标较简单,有代表性)。
三、表扬的力度不够,有几个成绩靠后的学生踊跃的举手回答问题,我没有及时的给予鼓励和表扬。
总之,通过教学反思,使我再次体会到:教学是一门艺术。因此我要经常反思、总结,使这门艺术不断贴近学生发展的需求,从而不断提高自己的课堂教学能力。
第5篇:一次函数图像教学反思
从这节课的准备来看,针对教学内容从课题的引入、知识的呈现方式、学生的学习活动安排、知识的巩固练习等多方面进行了多次的修改。
通过课堂的实际实施感觉上也不是尽善尽美,还有令人不满意的地方。教师应该通观教材,把握知识的脉络体系,又要站在高于教材的位置统筹安排。这样,教师才能灵活的把握课堂教学。而现在,教师缺乏的正是这一点,还是为了教而教。按部就班,设计的条条框框较多,多了一些稳重,少了一些灵活。而在课堂上,教师面对的是数十名学生,师生之间、生生之间考虑问题的角度、方式要灵活的多、开放的多,有可能教师固定的设计会影响到学生的.思维发展。从这一角度讲,教师应在把握知识的基础上。结合学生的表现,灵活多样的处理知识。学生是学习的主体,学生活动是新教材的一大特点。新教材在知识安排上,往往从实例引入,抽象出数学模型。通过学生的观察、分析、比较、归纳,探究知识的发生、发展、形成的过程,得出结论,并能运用解决实际问题。侧重于学生能力的培养,让学生知道学什么,如何学。因此,教学过程中,如何安排学生的学习活动至关重要,本节课,学生活动设计了三个方面。一是通过画函数图象理解一次函数图象的形状,二是两点法画一次函数的图象,三是探究一次函数的图象与k、b符号的关系。
在学生活动中,如何调动学生的积极性、互动性,提高学生活动的实效性。值得老师们探讨。为了达到上述目的,我结合每个活动,都给学生明确的目的和要求,而且提供操作性很强的程序和题目。如在活动一中,要求学生观察图象的形状,两条直线的位置关系。
在活动二中,强调两点法(直线与坐标轴的交点)画直线。在活动三中,探究k、b符号与直线经过的象限与增减性的关系。学生目标明确,操作性强,受到了较好的效果。本节课的重点是由一次函数的解析式确定函数图象,研究函数性质。由函数图象的位置判断解析式中k、b符号。体现了数学中非常重要地数形结合的思想。这段内容的教学,还是从学生活动出发,从具体的实例研究起,观察图象的位置和性质,在按照k、b的符号分类讨论,使学生建立起数形之间的联系。还要找到数形间的结合点,明确k的符号决定直线的什么位置,b的符号又决定了什么。为了加深学生对知识的理解,课上设计了由解析式画函数图象的草图,由草图的位置判断解析式中k、b的符号的练习,收到了一定的效果。
第6篇:一次函数图像教学反思
教学过程中教师应通过情境创设激发学生的学习兴趣,对函数与图像的对应关系应让学生动手去实践,去发现,对一次函数的图象是一条直线应让学生自己得出。在得出结论之后,让学生能运用“两点确定一条直线”,很快做出一次函数的图像。在巩固练习活动中,鼓励学生积极思考,提高学生解决实际问题的能力。
根据学生状况,教学设计也应做出相应的调整。如第一环节:探究新知,固然可以激发学生兴趣,但也可能容易让学生关注代数表达式的寻求,甚至部分学生形成一定的认知障碍,因此该环节也可以直接开门见山,直切主题,如提出问题:一次函数的代数形式是y=kx+b,那么,一个一次函数对应的图形具有什么特征呢?今天我们就研究一次函数对应的.图形特征—本节课是学生首次接触利用数形结合的思想研究一次函数图象和性质,对他们而言观察对象、探索思路、研究方法都是陌生的,因而在教学过程中我通过问题情境的创设,激发学生的学习兴趣,引导学生观察一次函数的图像,探讨一次函数的简单性质,逐步加深学生对一次函数及性质的认识。本节课的重点是要学生了解正比例函数的确定需要一个条件,一次函数的确定需要两个条件,能由条件求出一些简单的一次函数表达式,并能解决有关现实问题。本节课设计注重发展了学生的数形结合的思想方法及综合分析解决问题的能力及应用意识的培养,为后继学习打下基础。
由于这节课的知识容量较大,而且内容较难,我们所用的学案就能很好地帮助学生消化理解该知识,。在教学过程中,让学生亲自动手、动脑画图的方式,通过教师的引导,学生的交流、归纳等环节较成功地完成了教学目标,收到了较好的效果。但还存在着不尽人意的地方,由于课的内容容量较大,对于有些知识点,如“随着x值的增大,y的值分别如何化?”,本应给学生更多的时间练习、讨论,以帮助理解消化该知识,但由于时间紧,学生的这一活动开展的不充分。课堂气氛不够活跃,个别学生的主动性、积极性没有充分调动起来。这是今后教学中应该注意的问题。
第7篇:一次函数图像教学反思
一次函数的概念、图象和性质,是这一章的重点。也是学习其他函数的重要基础,通过一次函数的学习,学生可以对函数的研究方法有一个初步的认识与了解,从而能更好地把握学习二次函数、反比例函数的学习方法。教学完后,对新教材有了一些更深的认识。从这节课的准备来看,针对教学内容从课题的引入、知识的呈现方式、学生的学习活动安排、知识的巩固练习等多方面进行了多次的修改。通过课堂的实际实施感觉上也不是尽善尽美,还有许多令人不满意的地方。究其原因,教师不能就这节课的知识而教这点知识,教师应该通观教材,把握知识的脉络体系,又要站在高于教材的位置统筹安排。这样,教师才能灵活的把握课堂教学。而现在,教师缺乏的'正是这一点,还是为了教而教。按部就班,设计的条条框框较多,多了一些稳重,少了一些灵活。而在课堂上,教师面对的是数十名学生,师生之间、生生之间考虑问题的角度、方式要灵活的多、开放的多,有可能教师固定的设计会影响到学生的思维发展。从这一角度讲,教师应在把握知识的基础上。结合学生的表现,灵活多样的处理知识。
学生是学习的主体,学生活动是新教材的一大特点。新教材在知识安排上,往往从实例引入,抽象出数学模型。通过学生的观察、分析、比较、归纳,探究知识的发生、发展、形成的过程,得出结论,并能运用解决实际问题。侧重于学生能力的培养,让学生知道学什么,如何学。因此,教学过程中,如何安排学生的学习活动至关重要,本节课,学生活动设计了三个方面。一是通过画函数图象理解一次函数图象的形状。二是两点法画一次函数的图象。三是探究一次函数的图象与k、b符号的关系。在学生活动中,如何调动学生的积极性、互动性,提高学生活动的实效性。值得老师们探讨。为了达到上述目的,我把学生分成四个组,每个组探索一种情况,我结合每个活动,都给学生明确的目的和要求,而且提供操作性很强的程序和题目。并根据每个组的表现给与一定的评价。如在活动一中,要求学生观察图象的形状,两条直线的位置关系。在活动二中,强调两点法(直线与坐标轴的交点)画直线。在活动三中,探究k、b符号与直线经过的象限与增减性的关系。学生目标明确,操作性强,受到了明显的效果。
本节课的重点是由一次函数的解析式确定函数图象,研究函数性质。由函数图象的位置判断解析式中k、b符号。
概括一次函数图象的性质时,一定要结合函数的图像
一次函数y=kx+b有下列性质:
(1)当k>0时,y随x的增大而______,这时函数的图象从左到右_____;
(2)当k<0时,y随x的增大而______,这时函数的图象从左到右_____.
(3)当b>0时,这时函数的图象与y轴的交点在________.
(4)当b>0时,这时函数的图象与y轴的交点在_________.
一次函数的图像和性质节,很好的体现了数学中非常重要地数形结合的思想。这段内容的教学,还是从学生活动出发,从具体的实例研究起,观察图象的位置和性质,在按照k、b的符号分类讨论,使学生建立起数形之间的联系。还要找到数形间的结合点,明确k的符号决定直线的什么位置,b的符号又决定了什么。为了加深学生对知识的理解,课上设计了由解析式画函数图象的草图,由草图的位置判断解析式中k、b的符号的练习,收到了很好的效果。
本节课从时间安排上有点前松后紧,这是我一贯的习惯,另外,在练习题的处理上,针对性练习不够充足,一些比较时尚的题型设计的的较少。
总之,作为一名数学教师,应在以后的教学中不断总结,不断创新
以上是我对本节课粗浅的看法,希望和同行们共勉。
第8篇:一次函数图像教学反思
我今天讲课的课题是一次函数的图像和性质,我们是集体备课后形成的教案,我把目标定位为:
1、理解正比例函数和一次函数的意义。
2、会画一次函数的图像,并结合图像和表达式理解一次函数的性质。
3、能根据已知条件确定一次函数的表达式。
下面对这节课反思如下:
1、上课仍然改不了以前的好多习惯,不放心学生,总想包办代替,自己讲的多,留给学生的时间和空间少。
2、学生展示的少,老师没有放手给学生,没有让学生去经历知识的获取过程。
3、起点过高,把学生的基础估计过高,不能面对的多数学生。没有本着低起点,小步伐,慢节奏的方式方法进行教学。
4、数形结合不够,应该从图像入手让学生经历画图像和观察图像的`过程,并且根据图像去解决一些问题。
5、用展台展示不太清晰,没有让学生画在黑板上效果好。
6、教师应该把课堂还给学生,让学生多做多讲。不可以有老师太多的讲解。
7、中考备课要讲究实效,不可以走过场,作秀,那只能是事倍功半。
8、要仔细钻研教材和课标,以及考试说明,备好课。这是上好课的前提。
9、没有注重方法的总结。
总之,还有诸多地方需要改进,我会在今后的教学中加以注意。
第9篇:一次函数图像教学反思
一次函数图像,是北师大八年级上册的内容。教学这一节时,我没有按照课本的讲解。我着这样安排的,先讲正比例函数的图像和性质,用一课时,今天我就是讲这一节。
先介绍函数的图像、画法。再画正比例函数的图像,引出正比例函数是经过原点的直线。接着介绍怎样作正比例函数的图像。用这种方法,作几个正比例函数的图像,总结规律。接着练习。
练习之后我备课时又有一个性质要介绍,由于时间的.关系,没有讲解,就下课了!
反思:
1、课堂中前段时间留给学生的时间长,没完成课前准备的教学任务。
2、本节课讲到第三个性质。
3、练习题要精而且少,难易适中。
4、注意课前准备,上课注意语言。